
Volume 6, Number 7 May 1994 $2.50

MUUG Lines
Manitoba IWZX® User Group

Newsletter of the Manitoba UNIX® User Group

Is UNIX Secure Enough?
By Andrew Trauzzi

A few months ago, a story appeared in the news about an
Automated Teller Machine scam. The thieves had con
structed a fake ATM and placed in a local shopping mall.
When someone placed their card in the machine and
attempted to withdraw some money, the machine displayed a
message that the network was down and the transaction
cancelled. What the machine actually did was send the
electronic information and the user's password to the thieves
who were waiting with a magnetic encoder. They encoded
the information on a card, inserted it into a real ATM,
entered the password, and withdrew the maximum amount of
money they could from the account

When I read that, it reminded me about the fake login
screen scam — users would type their login name and
password into a program that emulated the real login screen.
The user information was recorded, and the program
proceeded to actually log the user in. So how can we protect
ourselves from fake ATMs and login screens? Well, if the
criminals are smart and thorough enough, it's very difficult
New high-tech crimes are one of the spin-offs for living in a
"globally-connected" world. UNIX systems play a large role
in this global-connection, and as such, are subject to incred
ible scrutinization and attempted break-ins.

Is UNIX really that insecure? Probably not — accord
ing to the experts. UNIX is just well-understood by many
more people than MVS or other mainframe operating
systems. Campuses all over the world are training grounds
for hackers and other students anxious to see how far they

This Month's Meeting

Meeting Location:
Our next meeting is scheduled for Tuesday, May 10,
at 7:30 PM. Once again, the meeting will be held in
the auditorium of the St-Boniface Hospital Research
Centre, just south of the hospital itself, at 351 Tache.
You don't have to sign in at the security desk—just
say you're attending the meeting of the Manitoba
UNIX User Group. The auditorium is on the main
floor, and is easily found from the entrance.

Meeting Agenda: See inside for details.

can take their new-found knowledge. Should we stop
training computer students in UNIX? I don't think so, unless
we want to produce professionals that lack the necessary
skills to function in today's workplace. The answer seems to
currently lie in proactive and reactive security measures.

UNIX machines are extremely well-connected. This
connectivity, along with inexperienced system administra
tion, allows UNIX machines to be constantly under 'hack
attack'. But connectivity also gives UNIX system adminis
trators the ability to quickly share information that allows
security 'holes' to be reported and filled very quickly. In
fact, there is an organization called the Computer Emergency
Response Team (CERT) set up by DARPA, whose sole
function is to collect and distribute computer security breach
reports, and security tools. CERT can be reached at (412)
268-7090 or <cert@cert. sei. emu. edu>.

If your company is thinking of purchasing UNIX
machines, or connecting to the Internet, then there are a
number of precautions you can take to maintain a high level
of security. All center around proper system administrator
and user education, and keeping up to date with security
news. There are many books you can purchase on UNIX
security as well, but they are obviously ineffective if the
knowledge is not put to practical use.

This month's speaker is J. Random hacker of hacking
industries. He will be discussing some common (and not so
common) security techniques used by large companies.
Hope to see you there! •*

Inside This Issue

Newsletter Editor's Ramblings 2
Presidents Corner 3
C++Q&A 4
A Concise Guide to UNIX Books 5
UNIX Q & A 6
GNU Review 7
PowerPC White Paper 8
SIG Sideline 12
April 12th Meeting Agenda 12

Printing Courtesy of Xerox Canada Ltd.

RAMBLINGS

Is There A Software Crisis?
By Andrew Trauzzi

I am one of a number of lucky Canadians to be chosen to
take part in a Federal Government job survey. :-< Last
month, the woman responsible for collecting job information
began entering her data into a computer program — unfortu
nately written to lay off unnecessary clerks. The Govern
ment gave them all portable computers with modems so they
could easily transmit their information from home to Stats
Canada. Sounds great, right? Well, in the ever-amazing PC
world, great ideas can sometimes end up costing more then
performing the same job by hand.

Now I won't go into the usual, "why should users have
to know about config.sys, or system.ini?" Instead, this
problem lies with the software developers themselves. First,
the survey took ten minutes longer then it did before,
because when the collector made a mistake, she had to press
Alt-FlO to clear ALL the information entered on the screen!
I asked her to read out the instructions that came with the
program, and sure enough, if you make a mistake and leave
the field, you have to start all over again! That was one of a
large number of annoyances that this program gave her, and
by the time she was finished asking questions, both her and I

The 1993-1994 Executive

President:
Vice-President:
Treasurer:
Secretary:
Membership Sec.:
Mailing List:
Meeting Coordinator:
Newsletter editor
Publicity Director
Past President
Information:

(or)

Bary Finch
Ramon Ayre
Rick Horocholyn
Brad West
Greg Moeller
Roland Schneider
Roland Schneider
Andrew Trauzzi
Rory Macleod
Susan Zuk
Bary Finch

Andrew Trauzzi

(W) 934-2723
(W) 947-2669
(W) 474-4533
(W) 983-0336
(H) 786-6132

1-482-5173
1-482-5173

(W) 986-3898
(W) 488-5168
(W) 989-3530
(W) 934-2723

(FAX) 934-2620
(W) 986-3898

(FAX) 986-5966

Advertising Rates

Quarter page $50
Half page $75
Full page $100
Insert (1-4 pages) $100

Above prices are per issue. The first ad is charged at
the fiill price; each successive month is 1/2 price.

Ad copy must be submitted by the final copy
deadline for an issue (usually 3 weeks prior to the
monthly meeting) in a format acceptable to the editor.
(Please make arrangements with editor beforehand.)

Internet E-mail: editor@muug.mb.ca

were ready to throw her PC out the window! Should people
be forced to use (and hate) computers this way?

With the advent and proliferation of Windows for the
PC, a whole slew of incredibly bad programs have appeared
for the PC. I would much rather have a command-line
interface then be forced to jump through gooey hoops in
order to perform some simple operation. Don't get me
wrong, I have used and programmed Macs and Windows
PCs for over eight years now, and I love EFFECTIVE
GUIs. I just think that some programmers should be forced
to use their own 'creations'.

Another case in point A large company decided to
convert a large application from MVS to Windows. In order
to 'reduce the amount of training and stress on employees',
this company has decided to forgo all the advantages of a
GUI environment and make all their windows exactly like
their CICS screens — FKeys and all! Yikes! Someone
should introduce this company to the '80s.

So, if there are any programmers or designers reading
this (and I think there are), please put some thought into your
GUI design, and help stop people from hating computers. •*

Copyright Policy and Disclaimer

This newsletter is ©opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

Group Information
The Manitoba UNIX User Group meets at 7:30 PM the
second Tuesday of every month, except July and
August Meeting locations vary. The newsletter is
mailed to all paid-up members one week prior to the
meeting. Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter's mailing label. Membership dues are
accepted at any meeting, or by mail.

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug.mb.ca

MUUG Lines 2 May 1994

mailto:editor@muug.mb.ca
mailto:membership@muug.mb.ca

PRESIDENT'S CORNER

So Many Choices
By Bary Finch

With our current "season" drawing quickly to a close, we are now
faced with the fun of choosing appropriate topics for our 1994 /
1995 meeting schedule. There seems to be an almost infinite level
of choice, even when we continue to focus on UNIX based
technology, as we of course will.

The executive has already had one meeting to try and get a
preliminary list of topics going. We came up with a rather extensive
choice of possibilities, however we will have to be realistic and get
it down to the eight topics we really need. It was felt we should not
really follow a "theme" for the year, as the "hot" topics are across
too broad a range. It would be a disservice to decide on a theme that
might exclude a very popular topic that we could easily get a
speaker for. So we will proceed with trying to determine the best of
the list we have, and start putting together the 1994 / 1995 program.

It's Your Choice
Here is where you, the members, can help us choose what you
want We are going to prepare a list of the topics we have come up
with, and present this list to you. This will probably be at the next
meeting on May 10. We would like you to let us know your priority
on the possible topics by ranking which you would prefer to see.
This is valuable and necessary information for your executive to
make the right decisions in our meeting topics.

We have already received some suggestions for topics from
members. Thank you to those that have contributed. For those of
you who know specific topics you would like to see, but haven't let
us know yet, please take the opportunity to add your suggestions to

the list of topics that we want you to prioritize.
One dilemma that we are encountering is the depth of a

general topic, and where to dive into it and get presenters. To
explain that last cryptic sentence, let me use an example such as
"Client / Server". Just exactly what does "Client / Server" mean? I
know of dozens of definitions, and each must be qualified against
your specific requirements. Unfortunately, in our case, our only
requirement is to present useful information on the topic, so we
can't determine an appropriate definition in this manner.

Elephant Lipstick?
So we must dive deeper into Client / Server and find specific
aspects that are of interest to our members. It is so broad a range
that it varies from nice GUIs on traditional mainframe applications
(otherwise known as putting lipstick on the elephant) to distributed
application systems that "seamlessly" interconnect with any other
corporate resource necessary. Somewhere in that range is at least
one good topic to present to MUUG!

Well, we will continue to work on this, and get our 1994 /
1995 program built so we include the best topics in the industry.
We appreciate your input, so keep those cards and letters coming!

The Barbecue is Coming Up
As for this season, we still have our upcoming presentation on
Security by Hewlett-Packard. And in June we will once again have
our annual barbecue. Stay tuned for more details on the barbecue
(you know, little details — like where it's being held).

See you on May 10! •*

CORPORATE SPONSORS

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

Whpt HEWLETT
mL'Hm PACKARD

A
XEROX

The
Document
Company

Great-West Life Assurance
Company

H O N L I N E T̂ANDEMCOMPUTERS
K M !
BBS ! 9 I B U S I N E S S S Y S T E M S

MUUG Lines 3 May 1994

PROGRAMMING

C++ Q&A
By Marshall P. Cline

This month's column examines C++ stream operators, and
introduces some free store management concepts.
SECTION 7: Input/output via <k>stream.h> and <stdio.h>

Question 26: How can I provide printing for a 'class X'?
Provide a friend operator « :
class X {
public:

friend ostream& cperator« (ostreamfc o, const X& x)
{ return o « x . i ; }

/ / . . .
pr ivate:

int i ; / / jus t for i l l u s t r a t ion
} ;

We use a friend rather than a member since the 'X'
parameter is 2nd, not 1st. Input is similar, but the signature
is:
istreamfc operator » (istreamfc i , X& x);
/ /not »const X& x ' !!
Question 27: Why should I use <iostream.h> instead of
the traditional <stdio.h>?
See next question.
Question 28: Printf/scanf weren't broken; why 'fix' them
with ugly shift operators?
The overloaded shift operator syntax is strange at first sight,
but it quickly grows on you. However syntax is just syntax;
the real issues are deeper. Printf is arguably not broken, and
scanf is perhaps livable despite being error prone, however
both are limited with respect to what C++ I/O can do. C++
I/O (left/right shift) is, relative to C (printffscanf):
• type safe — type of object being I/O'd is known statically

by the compiler rather than via dynamically tested '%'
fields.

• less error prone — redundant info has greater chance to get
things wrong C++ I/O has no redundant'%' tokens to get
right

• faster — printf is basically an 'interpreter' of a tiny
language whose constructs mainly include '%' fields, the
proper low-level routine is chosen at runtime based on
these fields. C++ I/O picks these routines statically based
on actual types of the args.

• extensible — perhaps most important of all, the C++ I/O
mechanism is extensible to new user-defined data types
(imagine the chaos if everyone was simultaneously adding
new incompatible '%' fields to printf and scanf?!).
Remember: we want to make user-defined types (classes)
look and act like 'built-in' types.

• subclassable — ostream and istream (the C++ replacements
for FILE*) are real classes, and hence subclassable. This
means you can have other user defined things that look and
act like streams, yet that do whatever strange and wonderful
things you want You automatically get to use the zillions
of lines of I/O code written by users you don't even know,

and they don't need to know about your 'extended stream'
class. Ex: you can have a 'stream' that writes to a memory
area (incore formatting provided by the standard class
'strstream'), or you could have it use the stdio buffers, or
[you name it..].

SECTION 8: Freestore management
Question 29: Does 'delete ptr' delete the ptr or the
pointed-to-data?
The pointed-to-data.

When you read 'delete p \ say to yourself 'delete the
thing pointed to by p ' . One could argue that the keyword is
misleading, but the same abuse of English occurs when
'free'ing the memory pointed to by a ptr in C: free(ptr);
/* why not 'fiee_thejstaff_pointed_toJ>y(p)' ?? */
Question 30: Can I free() ptrs alloc'd with 'new' or
'delete' ptrs alloc'd w/ mallocO?
No. You should not mix C and C++ heap management.
Question 31: Why should I use 'new' instead of trustwor
thy old mallocO?
mallocO doesn't call constructors, and freeO doesn't call
destructors. Besides, mallocO isn't type safe, since it returns
a 'void*' rather than a ptr of the right type (ANSI-C punches
a hole in its typing system to make it possible to use mallocO
without pointer casting the return value, but C++ closes that
hole). Besides, 'new' is an operator that can be overridden
by a class, while 'malloc' is not overridable on a per-class
basis (ie: even if the class doesn't have a constructor,
allocating via malloc might do inappropriate things if the
freestore operations have been overridden).
Question 32: Why doesn't C++ have a 'reallocO' along
with 'new* and 'delete'?
Because realloc() does bitwise copies (when it has to copy),
which will tear most C++ objects to shreds. C++ objects
know how to copy themselves. They use their own copy
constructor or assignment operator (depending on whether
we're copying into a previously unused space [copy-ctor] or
a previous object [assignment op]).
Moral: never use reallocO on objects of a class. Let the class
copy its own objects.
Question 33: How do I allocate / unallocate an array of
things?
Use new[] anddeleteU:

Thing* p = new Thing[100];
/ / . . .
delete [] p;
/ /older compilers require you to use 'delete
//[100] p '

Any time you allocate an array of things (ie: any time
you use the '[...]' in the vnew' expression) you MUST use the
'[] ' in the 'delete' statement The fact that there is no
syntactic difference between a ptr to a thing and a ptr to an
array of things is an artifact we inherited from C. •*

MUUG Lines May 1994

FEEDBACK

A Concise Guide to UNIX Books
Compiled by: Samuel Ko (kko@sfu.ca, sko@wimsey.bc.ca)

Submitted by Andrew Trauzzi

This month we look at some shell programming books, and
UNIX editors.

The Unix C Shell Field Guide
Gail Anderson and Paul Anderson

1986 ISBN: 0-13-937468-X
• The C-Shell Bible - everything you need to know to

understand csh and use Unix effectively.
Unix C Shell - Desk Reference

Martin Arick
1992 ISBN: 0-89435-328-4

• A more recent text on maximizing the use of C-Shell.
Unix Shell Programming

Stephen Kochan and Patrick Wood
1990 ISBN: 0-672-48448-X

• Highly Recommended A classic on using and programming
Bourne Shell (and Korn Shell).

Unix Shell Programming
Lowell Arthur

2nded. 1990 ISBN: 0-471-51821-2
• This covers not only common shells but also general

software tool concepts.
The Korn Shell Command and Programming Language

Morris Bolsky and David Korn
1989 ISBN: 0-13-516972-0

• The authoritative reference.
Unix Desktop Guide to the Korn Shell

John Valley
1992 ISBN: 0-672-48513-3

• This one is easier to read than the work by Kom and
Bolsky.

The KornShell User and Programming Manual
Anatole Olczak

1992 ISBN: 0-201-56548-X
• An everything-you-want-to-know-about-KornShell book.

Korn Shell Programming Tutorial
Barry Rosenberg

1991 ISBN: 0-201-56324-X
• A good tutorial on creating Korn shell scripts.

Learning the Korn Shell
Bill Rosenblatt

1993 ISBN: 1-56592-054-6
• Yet another comprehensive text on the Korn Shell.

Unix Editors
GNU EMACS Manual

Richard Stallman
7th ed. 1991

• The official manual of GNU Emacs, essential for emacs
users.

Learning GNU Emacs
Debra Cameron and Bill Rosenblatt

1992 ISBN: 0-937175-84-6

• Highly Recommended. Probably the best documentation on
editing with GNU Emacs.

Desktop Guide to Emacs
Ralph Roberts and Mark Boyd

1991 ISBN: 0-672-30171-7
• Another good book on emacs.

GNU Emacs Unix Text Editing and Programming
M. Schoonover, J. Bowie and W. Arnold

1992 ISBN: 0-201-56345-2
• Something for everyone who wants to use Emacs.

Learning the vi Editor
Linda Lamb

1990 ISBN: 0-937175-67-6
• A very good guide to vi and ex commands, with a quick
reference card.

The Ultimate Guide to the vi and ex Text Editors
Hewlett-Packard

1989 ISBN: 0-8053-4460-8
• Another decent text on vi and ex.

vi Tutor and vi Reference
Robert Colon et al. (Tut), Maarten Litmaati (Ref)

2.1 (Tut), 8 (Ref)
The latest interactive tutorial (vitutor2.1. shar (. Z)) can be
obtained by anonymous ftp from ftp. mines. Colorado. edu
(in /pub/tutorials). And the refernce and other vi stuff are
obtainable by anon-ftp from ftp. uwp. edu (in /pub/vi). •*

ACCENTServer News
HP, IBM, Novell and SUNSOFT Announce CDE Progress
Common Desktop Environment (CDE) has been delayed
awhile to enable more testing with customer, gain
consensus and smooth-out some wrinkles in integration
with the various vendors' software products.

The good news is that the second snapshot of the
CDE effort is available.

In theory, CDE was designed to be an easy-to-use
desktop environment which would unite the UNIX
offered by various software vendors. In its final form,
CDE will allow software developers to create applications
that look and behave the same way when run on any
UNIX system that incorporates the CDE interfaces.

An updated specification of CDE will be submitted
to X/Open in the third quarter of 1994 to facilitate the
Fast-Track acceptance process. As part of the ongoing
development efforts, HP, Novell, IBM, and SunSoft
agreed to extend the early-access phase to accommodate
user input and to facilitate smooth system migration.

The availability of the second snapshot and the
agreement of the companies to extend the early access
phase to accommodate user inputs indicates there is still a
strong commitment by the four companies to provide a
Common Desktop Environment to the UNIX community.

MUUG Lines 5 May 1994

mailto:kko@sfu.ca
mailto:sko@wimsey.bc.ca

HANDS-ON

UNIX Q&A
Originally Compiled by Ted Timar

Submitted by Andrew Trauzzi

Question 1: How do I tell inside .cshrc if I'm a login shell?
When people ask this, they usually mean either: How can I
tell if it's an interactive shell? or How can I tell if it's a top-
level shell?

You could perhaps determine if your shell truly is a
login shell (i.e. is going to source ".login" after it is done
with ".cshrc") by fooling around with "ps" and "$$". Login
shells generally have names that begin with a '-'. If you're
really interested in the other two questions, here's one way
you can organize your xshrc to find out.
if (! $?CSHLEVEL) then

This is a "top-level" shell,
perhaps a login shell, perhaps a shell started up by
*rsh machine some-command".
This is where we should set PATH and anything else we
want to apply to every one of our shells,
setenv CSHLEVEL 0
set home = -username # just to be sure
source ~/.env # environment stuff we always want

else
This shell is a child of one of our other shells so
we don't need to set the environment variables again,
set tmp = $CSHLEVEL § tmp++
setenv CSHLEVEL $tmp

endif
Exit from .cshrc if not interactive, e.g. under rsh
if {! $?prompt) exit
Here we could set the prompt or useful aliases
for interactive shells only,
source -/.aliases
Question 2: How do I construct a shell glob-pattern that
matches all files except"." and ".." ?
You'd think this would be easy.
Matches all files that don't begin with a ".";
. * Matches all files that do begin with a ".", but this

includes the special entries "." and "..", which often
you don't want;

. [! .]* (Newer shells only; some shells use a "A" instead of
the "!"; POSIX shells must accept the "!", but may
accept a "A" as well; all portable applications shall not
use an unquoted "A" immediately following the "[")
Matches all files that begin with a "." and are
followed by a non-"."; unfortunately this will miss
"..foo";

. ??* Matches files that begin with a "." and which are at
least 3 characters long. This neady avoids "." and
"..'\ but also misses ".a".

So to match all files except"." and ".." safely you have to
use 3 patterns (if you don't have filenames like ".a" you can
leave out the first):

. [! .] * .??* *
Alternatively you could employ an external program or two

and use backquote substitution. This is pretty good:
•Is -a | sed -e ' /A \ .$/d« -e 7 A \ . \ . $ / d "

(or 'Is -A' in some Unix versions)
but even it will mess up on files with newlines, IFS charac
ters or wildcards in their names.
Question 3: What's wrong with having V in your $PATH ?
A bit of background: the PATH environment variable is a list
of directories separated by colons. When you type a com
mand name without giving an explicit path (e.g. you type
"Is", rather than "/bin/Is") your shell searches each directory
in the PATH list in order, looking for an executable file by
that name, and the shell will run the first matching program
it finds.

One of the directories in the PATH list can be the
current directory "." . It is also permissible to use an empty
directory name in the PATH list to indicate the current
directory. Both of these are equivalent
for csh users:

setenv PATH :/usr/ucb:/bin: /usr/bin
setenv PATH . : /usr /ucb: /b in: /usr /b in

for sh or ksh users
PATH=:/usr/ucb:/bin:/usr/bin export PATH
PATH=.:/usr/ucb:/bin:/usr/bin export PATH

Having "." somewhere in the PATH is convenient — you
can type "a.out" instead of "./a.out" to run programs in the
current directory. But there's a catch.

Consider what happens in the case where "." is the
first entry in the PATH. Suppose your current directory is a
publically-writable one, such as "/tmp". If there just happens
to be a program named "/tmp/ls" left there by some other
user, and you type "Is" (intending, of course, to run the
normal "/bin/Is" program), your shell will instead run "./Is",
the other user's program. Needless to say, the results of
running an unknown program like this might surprise you.
It's slightly better to have "." at the end of the PATH:

setenv PATH /usr /ucb: /bin: /usr /bin: .
Now if you're in /tmp and you type "Is", the shell will

search /usr/ucb, /bin and /usr/bin for a program named "Is"
before it gets around to looking in ".", and there is less risk
of inadvertendy running some other user's "Is" program.
This isn't 100% secure though - if you're a clumsy typist and
some day type "si -1" instead of "Is -1", you run the risk of
running "./si", if there is one. Some "clever" programmer
could anticipate common typing mistakes and leave pro
grams by those names scattered throughout public directo
ries. Beware.

Many seasoned Unix users get by just fine without
having "." in the PATH at all:

setenv PATH /usr/ucb:/bin: /usr /bin
If you do this, you'll need to type "./program" instead

of "program" to run programs in the current directory, but
the increase in security is probably worth it. •*

MUUG Lines May 1994

HANDS-ON

GNU Review
By Peter Graham

I'm writing this article one whole day before the deadline. (Well,
actually just about an hour or so before midnight the day before the
deadline.

I also have to do a slight change of plans due to a tight
schedule. I'll take about Gnu make next month and cover CVS this
month.

CVS-An RCS Front End
What is CVS? Well, we are told in the man page that it stands for
Concurrent Versions System. That doesn't tell us much. Certainly
not much more than "An RCS Front End". Thus, to pilfer from the
README file provided with the distribution (which pilfered from
the man page)...

"cvs is a front end to the rcs(l) revision control system which
extends the notion of revision control from a collection of files in a
single directory to a hierarchical collection of directories
consisting of revision controlled files. These directories and files
can be combined together to form a software release, cvs
provides the functions necessary to manage these software releases
and to control the concurrent editing of source files among
multiple software developers"

CVS requirements
Since CVS is a front end to RCS, you better have RCS installed on
your system before trying to use CVS. :-0 (RCS version 5.6 or later
is preferred). CVS also uses NDBM It includes its own code for
cross-platform support which is adequate for all but the largest
applications. If you feel you will use CVS heavily, it is better to use
your native NDBM. This can be done by editting 'src/config.h\
NDBM is probably available on pretty much all systems now.

CVS installation
Unlike, its friend RCS, CVS is pretty much a standard Gnu install.
You begin by checking 'src/config.h\ The only thing I had to do
there was add the '-a' option to the diff program specification since
I use Gnu diff (the preferred option). You must then run the auto-
configure script './configure'. Carry on with a 'make' and (as root)
"make install' and then finish things up with a Vcvsinit' to initialize
the CVS system. For this final step you will need to specify the
CVS root repository where all versions of your software project(s)
will be maintained. Pick a filesystem with plenty of free space if
you are going to make heavy use of CVS. Of course, if you are
running CVS in a networked environment (like many of us don't)
you should choose a filesystem which is NFS/RFS/AFS/... mounted
appropriately.

CVS Components
Unlike RCS, CVS is a single program with many options (a.o.L
many programs with few options). For you graphics people, its sort
of the 'bitblt' of revision control. Much of what it does looks like
RCS commands (as would be expected). For example, you check in
and check out code. Rather than doing this on a per-file basis
though you typically do it on a per-module basis. A module may
consist of many files organized hierarchically. There is also a
'mkmodules' command which rebuilds the modules database. This
is infrequently used.

CVS Usage
The first thing to be done to use CVS is to set the CVSROOT
environment variable in your login script to point to the CVS
repository specified during Vcvsinit'. CVS has many options and
sub-commands. You can generally start off (maybe even get by)

with a few of them. The general syntax of a cvs command is 'cvs
[cvs_options] cvs_cmnd [cmnd_options] [cmnd_args]\ The
essential cvs commands (*cvs_cmnd') are:

cvs checkout <modules>
• Checks out the named module(s), each of which consists of a file

or hierarchy of files. This command creates a local copy of the
flle(s) for you in the current directory and also records usage
information so that other programmers can be prevented from
concurrendy updating the same module(s).

cvs update
• When executed within the local copy of the module(s) extracted

by 'checkout' this command causes your file copies to be updated
with any changes made by other programmers (assuming
concurrent updates are permitted).

cvs add <file>
• Adds a new file to the current local module which will be added

to the repository on the next 'commit'.
cvs remove <file>
• After deleting the local copy of a file, this command can be used

to cause the eventual removal of the file from the module in the
repository (again, at 'commit' time).

cvs commit <file>
• This command causes your changes to be incorporated into the

module in the repository.
cvs import <file>
• Allows new modules to be added to the repository. The <file>

specified will usually be a directory containing the files composing
the initial implementation of a project

There are many more CVS commands and also many options
associated with them. They are far too numerous to discuss here.
See the man page for more information.

CVS Summary
Name CVS (Concurrent Versions System)
Description Front end to RCS allowing hierarchies of

files to be managed with version control.
Archive Loc'n prep.aLmit.edu: /pub/gnu/cvs-1.3.tar.gz
Archive size 419164 bytes
Approx Install Space .. 3MB
Install Time(Spare-l).. A little under 10 minutes.
Pros • Free, small, and easy to install.

• Supports hierarchically structured projects.
(This is REALLY important for large
projects.)

• Specific mailing list in support of CVS.
<inf o-cvs-request@prep. a i .mit . edu>
for requests to be added/deleted.
info -cvs @prep. a i .mit. edu for bug
reports, questions and the like.

Cons • Storing all projects on one file system is a
little restrictive if you are tight on space.
Symlinks are, of course, an answer.

See you all at the next meeting. Anybody else looking forward to
the summer BBQ meeting? Requests, as always, to
<pgraham@cs. umanitoba.ca>. • *

MUUG Lines May 1994

prep.aLmit.edu

INDUSTRY

The PowerOpen White Paper
Part 1 — The PowerPC Architecture

Submitted by Keri Gustqfson through Bary Finch

The PowerPC alliance has the "Power" to change desktop
computing as we know it today. In this month's and next
month's newsletter, the original IBM white papers will be
presented in full This month's paper will discuss the
PowerPC architecture and the impact it will have on future
computers. Next month fs paper will discuss the PowerOpen
consortium and what it means to the computing community.
Both papers have been submitted courtesy of IBM. (See the
end of this article for copyright information.)

The PowerPCfTM) Architecture
The PowerPC Architecture, introduced with the Apple, IBM,
and Motorola alliance in October 1991, has seen wide
acceptance by major system vendors. These vendors have
adopted this common RISC architecture to span all types of
computing platforms from laptops to supercomputers with
software compatibility throughout PowerPC microproces
sors will also become the core for a variety of embedded
controllers for such applications as automobiles and other
real-time, mission-critical products.

The PowerPC Architecture is based on the existing
POWER™ (Performance Optimization With Enhanced
RISC) architecture used in various system product lines from
multiple vendors originating with IBM's successful RS/6000
line of workstations and servers. This architectural heritage
will allow PowerPC products to take advantage of the large
installed base of POWER software applications already in
place for those platforms. The name "PowerPC" reflects the
refocus of the architecture in a form suitable for very high
volume, single-chip microprocessors. This, combined with
its new multiprocessor architectural features, will make
PowerPC processors ideal solutions for systems ranging
from low cost portable and desktop computers all the way up
to symmetrical multiprocessors and highly parallel
supercomputers.

History Of RISC Technology
The basic ideas behind Reduced Instruction Set Computers
(RISC) were developed in the mid 1970s at IBM's TJ.
Watson Research Center by John Cocke, and embodied in a
machine called the IBM 801 minicomputer [Radin82]. These
ideas were further refined and popularized by a group at the
University of California in Berkeley led by David Patterson,
who coined the torn "RISC' [Paterson81]. These early RISC
pioneers realized that the then prevalent trend toward more
complex instruction set computers (embraced by "CISC"
processors such as the VAX, 8086, 32000, and 68000
processor architectures) was not the best approach for
building future high performance processors.

The primary motivation for more complex instruction
sets, up to that time, had been the desire to reduce the
"semantic gap" between the instructions executed by the
processor and the high-level languages in which people were
programming. This notion was based on the intuitively

appealing theory that such a processor would have to execute
fewer instructions (have a shorter path length) and would,
therefore, naturally have better performance. The key
observation made by early RISC researchers, however, was
that the existence of a microcode interpreter in the processor
to execute these complex instructions introduced an expen
sive overhead that actually slowed down execution of the
more frequently occurring simple instructions — with a net
loss in performance. Furthermore, complex instructions
proved to be a rather poor target for compilers because it was
difficult to make effective use of them and in many cases
they precluded optimizing away unnecessary operations.

With larger, faster, less expensive memory devices and
improved compiler technology available, it became feasible
to consider simplifying the instruction set, even with the
potential cost of larger code size and higher memory
bandwidth requirements. The 801 was the first machine to
implement this strategy. It successfully demonstrated that
simplifying the instruction set enabled implementations with
smoother running (bubble free) pipelines that approached the
goal of single-cycle instruction throughput. It also showed
that investing more transistors in instruction throughput and
fast cycle times, produced a more optimal solution to the
computer performance equation than was possible by
spending those transistors on complex instructions.

These basic RISC ideas turned out to be even more
significant than originally thought Not only did RISC
processors demonstrate more parallelism through better
pipelining, they also made the idea of dispatching multiple
instructions simultaneously (superscalar 1) tractable. This is
the essence of RISC architecture. It allows the execution of
more operations in parallel and at a higher rate than is
possible with a CISC architecture using similar implementa
tion complexity.

Satisfied that the 801 concepts had made significant
improvements in instruction cycle times and pipeline
efficiency, IBM set out to improve on the 801 architecture by:

1) explicidy embodying the concept of superscalar
operation in the architecture;

2) improving the architecture as a target for compilers;
3) further reducing instruction path lengths; and
4) including floating-point in the architecture.

This effort culminated in the development of the POWER™
Architecture [Oehler90] in the late 1980s, which now forms
the basis of IBM's RISC System/6000T family of worksta
tions and servers.

In The Beginning, There Was the POWER Architecture
The POWER Architecture is a conventional RISC architec
ture in most respects; it adheres to the most important of the
RISC tenants:

1) Fixed length, consistently encoded instructions.
2) A register-to-register Goad/store) architecture with «•*

MUUG Lines May 1994

The PowerOpen White Papers

primitive addressing modes.
3) Relatively "simple" instructions.
4) A large, orthogonal register file.
5) Three operand (non-destructive) instruction format

However, the POWER Architecture also has several features
that set it apart from other RISC architectures:

First, it was organized around the idea of superscalar
instruction dispatch. Conceptually, instructions are dis
patched across three independent execution units, a branch
unit, a fixed-point unit, and a floating-point unit Instructions
can be dispatched to each of these units simultaneously,
where they can execute concurrently and finish out of order.
Execution units adjust to the dynamic instruction mix by
"slipping" past each other. To facilitate this, each of the
conceptualized execution units has an independent set of
resources to minimize communication and interaction
between units. And, while the execution units can complete
instructions out of order, the units are synchronized transpar
ently to the software by fully interlocked instruction pipe
lines. This not only simplifies programming, it also assists in
assuring software compatibility across multiple different
implementations.

Second, the POWER Architecture included _ _ _
several "compound" instructions to reduce the
instruction path length. Perhaps the only
drawback to RISC technology vis-a-vis CISC
technology, is that it takes more instructions to
perform a given task. But IBM recognized that
much of this code expansion is avoidable with
minor enhancements to the instruction, which do
not constitute a return to full blown complex
instructions a la CISC. For example, a large
fraction of the code expansion was found to be
due to the prolog and epilog code associated "—""™™
with saving and restoring registers across a procedure call.
To eliminate this factor, IBM introduced "load and store
multiple" instructions that allow several registers to be
moved to or from memory with a single instruction. Another
example is the automatic update of the base address register
on loads and stores, which eliminates extra instructions to
increment the index when striding through arrays. Even
though this is a compound operation, it does not adversely
effect the RISC pipeline flow because the updated address is
already available and a register file port is normally available
while waiting on the memory operation. Other path length
reducing features include such things as:

1) an extensive set of bit-field manipulation instructions;
2) compound multiply-add floating-point instructions;
3) condition register setting as a side-effect of normal

instruction execution; and
4) load and store string instructions (which load or store

arbitrarily aligned).
A third factor that differentiates the POWER Architec

ture, is the absence of the branch-and-execute capability
found in the 801 and many other contemporary RISC
machines. Branch-and-execute (sometimes called delayed

"Floating-point is
not an afterthought
or optional add-on

with a clumsy
coprocessor
interface"

branching) causes the instruction following a branch to
execute before the branch gets taken. This feature worked
effectively in early RISC machines to fill the instruction
bubble created by branch evaluation and fetching the new
instruction stream. However, in more advanced, superscalar
machines, this feature is both ineffectual and burdensome. It
is ineffective because a single cycle branch delay induces
multiple instruction bubbles that cannot all be covered with a
single architectural delay slot Such machines will nearly all
implement much more exotic facilities (e.g., branch target
caches) for covering these bubbles, which render the delayed
branch useless. Furthermore, delayed branching is a burden
in machines that perform speculative execution past branches
because the delayed branch introduces significant complexity
in the instruction sequencing logic. As a result, the delayed
branch was not included in the POWER Architecture.

The branching technique used in the POWER Architec
ture is a fourth unique feature of the architecture compared to
other RISC processors. The POWER Architecture uses an
enhanced condition register facility. The problem with
traditional condition register architectures, is that they pose a
performance limitation in the two ways: first, setting a
wmmmmmmmw^ condition code as a side-effect of instruction

execution limits a compiler's opportunity to
rearrange code, and second, a condition register
is a single architectural resource that causes a
bottleneck in a machine that executes multiple
instructions in parallel or out of order. Some
RISC architectures (e.g., MIPS and the 88000)
avoided the problem by eliminating the condi
tion register and requiring conditions to be
explicitly set (by a compare instruction) in a
general register and providing a set of condi-

— — — tional branch instructions that test a general
register on the fly (e.g., branch on zero).

The POWER Architecture, on the other hand, fixes the
problems of the traditional condition register approach by:

1) providing an opcode bit in each instruction to make
the condition register update optional thereby
restoring the compiler's ability to rearrange code, and

2) providing multiple condition registers (eight) to
produce a large condition register namespace and thus
avoid the single resource problem.

This approach supports the conceptual organization of
the machine into independent execution units. Conceptually,
the condition register is contained within the branch unit
along with the branch address registers. As a result, it is not
necessary to access the general register file (in the fixed-
point unit) to evaluate and execute a conditional branch. This
organization leads to the concept of "zero-cycle branching."
In this concept, to the extent the compiler can schedule
setting the condition code and loading the branch address
registers early, the hardware can lookahead and remove, or
fold out, resolved branches from the instruction stream. This
avoids the instruction issue slot normally required by the
branch instruction and allows a continuous linear stream of m*

MUUG Lines 9 May 1994

The PowerOpen White Papers

instructions to flow to the fixed and floating-point units.
A fifth aspect of the POWER Architecture different

from some other RISC architectures, is that it embraces
floating-point as a first class data type. Floating-point is not an
afterthought or optional add-on with a clumsy coprocessor
interface. It is directly supported in the instruction set
architecture just like standard integer and logical data types.
This makes it more well integrated into the overall scheme
and encourages much higher floating point performance.
This recognizes the increasing importance of floating-point
in a wide range of application domains. The architecture
supports the IEEE-754 standard floating-point format It
provides a set of 32, double-precision floating-point registers
in the floating-point unit that are separate from the general
registers in the fixed-point unit The architecture supports
both single- and double-precision data, but single-precision
values in memory are converted to double-precision format
when loaded from memory to registers, and all arithmetic
instructions operate on double-precision data. The floating
point instruction set includes a set of multiply-and-add
instructions that can dramatically improve the performance
of many algorithms.

PowerPC Architecture: The Vision, The ——-—=
Solution:

Satisfying the diverse needs of the three
originator companies and meeting their com
bined long term vision of computing, required
some modifications to the POWER architecture.
So, with the goal of maintaining RISC System/
6000 software compatibility, a team of architects
from IBM, Apple, and Motorola set out to refine
the architecture. For example, the "rich"
POWER instruction set was pared back to better •
facilitate low-cost, single-chip versions. Also, a
few features were removed to simplify construction of future
very aggressive superscalar implementations. And, to satisfy
the demands of future software systems, the architecture was
extended to a full 64-bits with strong multiprocessor support
These changes resulted in a new architecture, officially
called the PowerPC Architecture, which will form the basis
for next generation products from many companies.

The PowerPC Architecture maintains the same basic
programming model and instruction opcode assignments as
the POWER Architecture. Care was taken so that the
POWER architecture features removed from PowerPC
architecture can still be tapped and emulated to permit
PowerPC processors to run existing POWER binaries. The
most significant differences between the POWER and
PowerPC architectures include:

1) elimination of the MQ register and all extended
precision shifts and integer multiply and divide
instructions which use it (to facilitate multi-issue
superscalar implementations);

2) elimination of four instructions whose operation was
dependent on source operand value (to reduce cycle
time);

"On a 64-bit
implementation,

the machine uses
the full 64-bit

logical address
space"

3) elimination of several bit-field instructions that had
three source operands (to avoid the need for an extra
general register file port);

4) elimination of support for the rarely used corner cases
of several instructions (to simplify implementation);

5) elimination of the "load-string-and-compare-byte"
instruction which was the most complex instruction in
the POWER Architecture (to simplify implementation);

6) addition of unsigned integer multiply and divide;
7) addition of a fixed-point subtract which does not

update carry;
8) addition of single-precision floating-point instructions

(POWER Architecture only supported double
precision which precluded implementations with fast
single and slower double-precision);

9) provision for a fast-trap-and-emulate mechanism for
implementing complex operations such as string
instructions (for low cost implementations);

10) an improved set of instructions for explicidy
scheduling data into and out of the cache under user
control;

11) definition of a weak storage ordering
— = model (to simplify dynamic reordering of

memory operations in hardware) with
user storage locking and synchro
nization (for multiprocessors);

12) addition of a little-endian addressing
mode switch;

and last, but not least,
13) extension of the architecture to a true 64-

bit model with full support for 64-bit
integers and address pointers while

— maintaining complete compatibility with
32-bit applications.

The most significant change to the architecture was the
extension to 64 bits. The architecture allows both 32- and 64-
bit versions of the PowerPC processors, but all processors
will run 32-bit applications as a minimum. 64-bit implemen
tations will have a 32/64-bit mode switch selectable from
supervisor code. 32-bit applications can run on 64-bit
implementations with a 64-bit operating system kernel. The
extension simply increases the size the registers to 64-bits
and adds a few new instructions for 64-bit operations, like
64-bit shifts, compares, and double-word fixed-point loads
and stores. The 32/64-bit mode switch actually has very litde
effect on the operation of the hardware and therefore doesn't
have the undesirable effects often associated with mode
switches. Nearly all instructions are mode independent, the
mode switch merely controls how much of a 64-bit effective
address is translated to a physical memory address. On a 64-
bit implementation, the machine uses the full 64-bit logical
address space, which gets translated to an even larger virtual
address space, and then finally translated to a somewhat
smaller (but still enormous) physical memory address. The
address translation mechanism is consistent and compatible with
the translation mechanism used on 32-bit implementations, m*

MUUG Lines 10 May 1994

The PowerOpen White Papers
The mode switch effects only a couple of other minor aspects
of the hardware such as selecting how overflow and carry
conditions get set and how many count-register bits are
tested on a conditional branch.

PowerPC Silicon For All
The first microprocessor based on the PowerPC architecture,
the PowerPC 601™ microprocessor, is now being sampled
by IBM and Motorola. It is a medium-sized, medium-
performance processor suitable for low- to medium-cost
desktop systems. This device also supports the enhanced
multiprocessor features for high-end system design. This
first device was based on an existing IBM single-chip
processor, but has had major enhancements to improve
performance and reduce costs. For example, the part has a
more sophisticated branch unit and implements the Motorola
88110 high-performance multiprocessor bus interface
[Gullette92]. It is a superscalar design capable of dispatching
three instructions per clock, with a large, 32KByte, 8-way
set-associative on-chip cache. The part is fabricated in an
advanced 4-level metal, 0.6um, 3.6volt CMOS process with
2.8 million transistors on a 1 lxl 1mm die, and has an
estimated performance of over 50 SPECint89 and 80
SPECfp89 at 66MHz.

IBM and Motorola, with Apple engineering participa
tion, have put into operation a new design center to develop
future PowerPC microprocessors. The Somerset design
center is a 37,000 square-foot facility located in Austin,
Texas, staffed primarily by Motorola and IBM with approxi
mately 300 engineering professionals. The design center is
currently working in parallel on three separate PowerPC
microprocessors. The three parts currently in development in
the design center include:

1) The 603: a processor intended primarily for the cost
sensitive, desktop and portable personal computer
systems, such as those in which Apple might use the
68030 today.

2) The 604: a high performance part for uniprocessor or
multiprocessor desktop personal computers and
workstations.

3) The 620: a 64-bit high-performance part for high-end
workstations, servers, and multiprocessor systems.

Engineers in the new design center are employing a
formal VLSI design methodology derived from the best of
both IBM's and Motorola's CAD tools. These tools will
combine the rapid design capability of the IBM tools with
the dense packing capability that Motorola has used to
produce very high volume, high yield microprocessors for
the commercial market The new designs will use an
advanced 0.5pm semiconductor technology using a common
set of design rales for both IBM and Motorola fabrication
facilities. Motorola will produce these parts in very high
volume in their new MOS11, sub-micron wafer fab in
Austin, Texas. IBM will manufacture these microprocessors
in their advanced semiconductor facility in Burlington,
Vermont. IBM will also sell these microprocessors in the
OEM market.

In addition to the four processors described above, new

PowerPC processor implementations are in development at
Motorola internal design centers. These designs are targeting
specifically at the high volume, very low cost embedded
control markets as well as the low power, sub-notebook
computer markets. Also, research is underway into advanced
microarchitectural techniques for the next generation of
billion-instruction-per-second class microprocessors to lead
the way into the 21st century.

Summary
The PowerPC Architecture represents the culmination of
nearly 20 years of work on RISC architectures beginning
with IBM's seminal work in the 1970s and refined both by
Apple's experience in advanced personal computers and by
Motorola's experience in delivering low-cost single-chip
microprocessors into high-volume markets. With their
combined resources, the originator companies intend to
deliver the broadest range of RISC microprocessors available
in the industry. The PowerPC architecture will drive the
power of RISC down to the very lowest end of the portable
computer marketplace as well as the highest end of the
supercomputer market

— Footnotes —
1) The term "superscalar" is believed to have been

coined by T. Agerwala and John Cocke [Agerwala87].
It refers to the machines capable of dispatching
multiple instructions per clock from a conventional
linear instruction stream.

2) Of course, any given processor may implement each
of the three conceptual units as multiple execution
units to allow more than three instruction per clock
issue.

3) The linkage conventions used by the POWER
compilers are very powerful, satisfying in one simple,
unified mechanism the problems of relocation, shared
libraries, and dynamic linkage. This is done by
indirect addressing through a table-of-contents (TOC)
which is updated at load time. The load and store
multiple instructions are critical to the linkage
conventions used in POWER software.

The PowerOpen Association
25 Burlington Mall Road
Burlington, MA 01803

Phone: (800) 457-0463 U.S & Canada
(617)273-1550 International

Portions of Ms document were supplied by International Business
Machines.
PowerOpen and the PowerOpen logo are trademarks licensed to
the PowerOpen Association, Inc.
Apple and Macintosh are registered trademarks of Apple
Computer, Inc.
POWER, RISC System/6000, PowerPC Architecture, and Power
601 are trademarks of International Business Machines
Corporation.
(Next month's column will present the IBM White Paper on the
PowerOpen association.) • *

MUUG Lines 11 May 1994

MEETINGS

SIG Sideline
By Brad West, SIG Coordinator

There was no specfic topic this meeting, so the round table
format was followed. The evening discussions centered
mainly around Linux with topics ranging from what tape
drives are supported, to how stable is Linux alongside other
operating systems on the same hard drive, to how well sound
cards work. The Slackware distribution is at version 1.2.0
and the kernel is at version 1.0.8. It was noted at the meeting
that the full distribution of Slackware for Linux version 1.2.0
is available at the U of M on ftp site <f tp. cc. umanitoba. ca>
in directory "/SLS/slackware" . Also if anyone is interested
in borrowing the Slackware distibution set of diskettes, you
can contact Greg Moeller <gkm@muug .mb. ca>, or come to the
next SIG meeting.

If anyone is interested in being a guest speaker at a SIG
meeting or you have a specific topic of interest, let me know.
I can be reached by email at <bwest@muug. mb. ca> or my
work phone is 983-0336. There is no specfic topic for next
month's meeting and in the event that a topic is not found,
the round table format will be followed. The next meeting is
scheduled for Tuesday, May 17, at 7:30 PM. This meeting
will again be held at ISM, 400 Ellice Avenue, behind
Portage Place. Our host is Wolfgang von Thuelen. He will
be waiting in the lobby as of 7:15 PM to let everyone in.
We' 11 see you at the May meeting. •*

Accent Server News
Don't leave your node without it!

(The Free Suranet Guide to Internet Resources, that is)
The latest version of SURAnet's Guide to selected resources on the
Internet is available for FREE from a couple of different sources.
We highly recommend this document It is kept up to date and is
user-friendly for neophytes. Here's how to get it

1. Send e-mail to flash@admin.sun.com with a subject of
"63.02". (Note: comes in two pieces — a total of 140K
bytes.)

2. Anonymous ftp to: ftp. sura. net: /pub/nic/ infoguide.
XX-XX. txt (Note: where XX-XX denotes the latest
publication date such as 03-93).

3. Send e-mail to accentserver@nis. com with the subject of
"SURANET GUIDE9. (Note: comes in seven pieces —- a
total of 140K bytes.) •+

This Month's Speaker
This month, Rob Dempsey will present 'Trust in a Distributed
Computing Environment". Issues discussed will be:

• Understanding of the issues facing administrators in a DCE.
• Understand technologies which can be used to address these

issues, specifically the Kerberos Authentication Service.
• Understand issues you will face in a successful implementa

tion of these technologies.
Rob is an Open Systems consultant with the HP Professional

Services Organization. His focus is on the security of systems in
the client-server environment.

Rob has worked in many corporations in Canada and abroad,

Agenda
for

Tuesday, May 10,1994, 7:30 PM
Samuel N. Cohen Auditorium

St-Boniface Hospital Research Centre
Main Floor, 351 Tache

1. President's Welcome 7:30

3.

5.

Business Meeting
a) Old Business
b) New Business

7:35

Presented Topic 7:45
"Trust in a Distributed Computing Environment"
Presented by Rob Dempsey of HP Canada.
(See writeup below)

Coffee Break and Informal Discussion 9:00

Note: Please try to arrive at the meeting between 7:15 and
7:30, to avoid disrupting the meeting in progress.

Coming Up
Meeting:
June's meeting is scheduled for Tuesday, June 10, at
7:30 PM. Meeting location will be the St-Boniface
Research Centre, as usual. The June meeting is the
annual MUUG barbecue! Stay tuned for details.

Got any ideas for meeting topics? Any particular
speaker, company, or product you'd like to see at one of
our meetings? Just let our new meeting coordinator,
Roland Schneider, know. You can e-mail him at
<r schimuug. mb. ca>.

Newsletter:
If you are interested in a particular topic, let me know.
I'm sure I could coerce you into writing an article! I
could use a few articles — especially shorter ones —
half a page to one page (400 to 1000 words) would be
fine.
Monsieur Ex has also let me know that his mail-box has
room for more of your wonderful queries again - please
submit your questions to the old guy via e-mail to
<m-ex@muug.mb.ca>. He may be old, but he's not ready
for retirement yet!

including Great-West Life, IPL, Canadian Utilities, ScotiaBank and
CitiCorp. He is currently co-authoring a book on distributed
computing security.

Rob has been a public speaker, instructor and author of several
articles in the technical computing fields. He is a professional
accountant (CGA), and holds a B.Sc. from Sir George Williams
University in Montreal. Rob resides in Calgary, Canada. •*

MUUG Lines 12 May 1994

mailto:flash@admin.sun.com
mailto:m-ex@muug.mb.ca

