
MUUG Lines 1 October 1994

Volume 6, Number 10

Printing Courtesy of Xerox Canada Ltd.

MUUG Lines

Inside This IssueThis Month’s Meeting

Newsletter of the Manitoba UNIX ® User Group

October 1994 $2.50

Manitoba UNIX® User Group

Newsletter Editor’s Ramblings 2
President’s Corner3
C++ Q & A ...4
UNIX Q & A ...5
Meet the 94/95 Board Nominees 6
Get the Visual Edge7
SIG Sideline ..10
Octobber 11th Meeting Agenda 10

Meeting Location:
Our next meeting is scheduled for Tuesday, October
11, at 7:30 PM. Once again, the meeting will be held
in the auditorium of the St-Boniface Hospital
Research Centre, just south of the hospital itself, at
351 Taché. You don’t have to sign in at the security
desk — just say you’re attending the meeting of the
Manitoba UNIX User Group. The auditorium is on
the main floor, and is easily found from the en-
trance.

Meeting Agenda: See inside for details.

ATM: The Next Big Thing in Communications
By Peter Dyson

Every business has its Holy Grail. Physicists root through the
cosmic strings seeking a Grand Unified Theory of the Universe;
empire builders salivate over the perfect hostile takeover. And
telecom wizards hunt for the ideal data-transfer protocol: suitable
for all data types and all wiring schemes; robust in recovering
errors, yet light on overhead; backward compatible, yet a solid
foundation for future growth, and so on.

To hear the evangelists of the Atm Forum tell it, at least this
Grail has been found. Asynchronous Transfer Mode (ATM) is
everything you ever wanted for data transfer, and more. It is scalable
over a wide range of speeds and network sizes; it carries voice,
motion video and computer files with equal ease. And it’s coming to
a telco near you real soon —in some areas, sooner than isdn.

ATM characteristics
Atm is a group of standards for moving packets of data over a
network. It is characterized by several features: switched-circuit
topology (think of the telephone system); small packets of data (53
bytes apiece); virtual circuits; and negotiable, guaranteed bandwidth.

Atm uses a connection-oriented approach. Each device on the
network is connected to a central switch, which sets up connections
between devices; a connection stays in place until the switch is told to
disconnect it. While a connection is in place, a workstation can count
on a known amount of bandwidth being available, regardless of the
other connections that may be going through the switch. Atm is
similar in spirit to the telephone system: local switches connect close
neighbors, central exchanges interconnect the switches and fiber
backbones span long distances.

This is in marked contrast to computer networking schemes
such as Ethernet, Token Ring or LocalTalk. These are all broadcast-
oriented approaches; every packet, no matter which station it is
addressed to, gets sent to many stations. As you add more stations,

the available bandwidth is spread ever-thinner.
The advantages of a switched-circuit network are flexibility and

scalability. Each device on an atm net can run at its own speed; an
interface card at the switch handles the clocking and buffering issues.
(In contrast, every device on an Ethernet must go at the same speed
or the whole net fails.) An atm network can grow as big as needed
without cutting performance simply by adding more switches.

Another advantage is that switches can be connected by multiple
paths. If a circuit fails or a fiber is bulldozed, the traffic can be rerouted
around the damage. When everything is working, the network can
allocate bandwidth to match demand by adjusting the routes.

All packets are created equal. The universal atm packet (also
called a cell) is 53 bytes long — 5 bytes of header and 48 bytes of
message — no matter whether it contains voice, video or files.
Because all packets are the same size, the network and the switches
don’t have to understand each separate kind of data, but can blindly
forward packets to their destinations.

Although 48 sounds like a small number, it was deliberately
chosen. Audio and video quality suffers if there are long time
delays in transmission. (For voice conversations, the threshold of
annoyance is about 50 milliseconds of lag time. Anyone who has
made a satellite phone call knows how disconcerting longer delays
can be.) It is thus important to minimize the time to assemble and
forward packets. The shorter the packet, the less time to process it
— the packet cannot be sent until the last byte has been digitized.

This month’s MUUG meeting features an excellent video presenta-
tion on ATM technology. If you are like most of us, you have
heard of ATM and may even know a little about it — but don’t
really know how it will affect you. Hope to see you at the October
meeting. ✒

MUUG Lines 2 October 1994

President: Bary Finch (W) 934-2723
Vice-President: Ramon Ayre (W) 947-2669
Treasurer: Rick Horocholyn (W) 474-4533
Secretary: Brad West (W) 983-0336
Membership Sec.: Greg Moeller (H) 786-6132
Mailing List: Roland Schneider 1-482-5173
Meeting Coordinator: Roland Schneider 1-482-5173
Newsletter editor: Andrew Trauzzi (W) 986-3898
Publicity Director Rory Macleod (W) 488-5168
Past President Susan Zuk (W) 989-3530
Information: Bary Finch (W) 934-2723

(FAX) 934-2620
(or) Andrew Trauzzi (W) 986-3898

(FAX) 986-5966

This newsletter is ©opyrighted by the Manitoba
UNIX User Group. Articles may be reprinted
without permission, for non-profit use, as long as
the article is reprinted in its entirety and both the
original author and the Manitoba UNIX User
Group are given credit.

The Manitoba UNIX User Group, the editor, and
contributors of this newsletter do not assume any
liability for any damages that may occur as a result
of information published in this newsletter.

The Manitoba UNIX User Group meets at 7:30 PM the
second Tuesday of every month, except July and
August. Meeting locations vary. The newsletter is
mailed to all paid-up members one week prior to the
meeting. Membership dues are $25 annually and are
due as indicated by the renewal date on your
newsletter’s mailing label. Membership dues are
accepted at any meeting, or by mail.

Manitoba UNIX User Group
P.O. Box 130, Saint-Boniface
Winnipeg, Manitoba R2H 3B4

Internet E-mail: membership@muug.mb.ca

Quarter page $50
Half page $75
Full page $100
Insert (1-4 pages) $100

Above prices are per issue. The first ad is charged at
the full price; each successive month is 1/2 price.

Ad copy must be submitted by the final copy
deadline for an issue (usually 3 weeks prior to the
monthly meeting) in a format acceptable to the editor.
(Please make arrangements with editor beforehand.)

Internet E-mail: editor@muug.mb.ca

Copyright Policy and DisclaimerThe 1993-1994 Executive

Advertising Rates Group Information

RAMBLINGS

One Year Later...
By Andrew Trauzzi

Well here I am, finishing up my tenth issue of MUUG Lines.
From your comments over the past year, you have generally
appreciated the content of our newsletter. I hope that you
will continue to do so. Looking back, I seemed to have more
member-written material in earlier issues. I think that
articles written by members are important as they give other
members a look at other viewpoints and interests.

GNU Where are You?
One notable column that has been absent so far is the ever-
popular GNU Review by Peter Graham. Maybe we will see
another couple of columns this year (how about it Peter?). If
anyone else would like to review some GNU product that
they installed or liked, please send it in! I’m sure Peter
would appreciate the help.

Ch Ch Ch Ch Changes...
Last year I said that I would change the look of the newslet-
ter somewhat. So far, it hasn’t changed at all. The reason
for this is twofold. First, Gilbert did such an excellent job on
the current look that it’s difficult to decide where to make
changes. I hate change for the sake of change — it should
always be for the better. Second, I haven’t had the time to

make any alterations. I don’t have a PostScript-capable laser
printer at home, so it’s a little difficult to see those PostScript
effects! In any case, I will either get a new laser printer, and/
or make some time to alter the look.

Thanks for the Fish!
I would like to personally thank a member of the board who
will not be running for re-election this year — Rick Horo-
cholyn. Rick has been MUUG’s treasurer for a number of
years (he never seemed to be able to get someone else to do
that job!), and has done an excellent job. Whoever fills your
shoes will have a big job to do. I mean that the person will
have to re-calculate all of the books! Seriously, enjoy the
extra time you have, and I hope to see you at least a few
meetings.

Coming Up
Here are a few things to look for in upcoming issues of
MUUG Lines:

• A review of the MKS Toolkit for DOS;
• CD Rom and Imaging Technology for UNIX;
• Audio and Digital Recording in UNIX.

Until then, keep those keyboards busy! ✒

MUUG Lines 3 October 1994

ONLINE
B U S I N E S S S Y S T E M S

PRESIDENT’S CORNER

October Overview
By Bary Finch

Great-West Life Assurance
Company

TM

The Manitoba UNIX User Group
gratefully acknowledges the

generous support of the following

Corporate Sponsors

CORPORATE SPONSORS

This month we will be holding our Annual General Meeting
(AGM), as the first part of our regular meeting. This is when we
will introduce the members of the new board for the 1994 / 1995
year. There will be four of us continuing on from last year, with our
new additions rounding out the board. Having several new people
added will give an always helpful change in perspective that keeps
the board dynamic.

There may be changes in the roles of the existing board
members that remain, and the new members will take on their
desired positions. However, this will all be transparent to our
membership. The board will strive, as always, to make the opera-
tions of MUUG unobtrusive to the general membership.

The second half of our meeting will be a video presentation on
Asynchronous Transfer Mode (ATM). ATM is becoming more
noticeable in the trade press all the time, and hopefully this video
will give you a good introduction as to what ATM means to you.

I would like to take this opportunity to thank Susan Zuk, our
Past President, for hosting the September meeting. I was away for
an extended period of time, and appreciated Susan taking the time
to organize the meeting.

From what I heard of our September meeting, we had a great
presentation on Object Oriented Technologies from Online
Business Systems. As one of our Corporate Sponsors, Online
Business Systems helps us even when they are not last few weeks.

Our main plan while travelling had been to use ATMs
(Automated Teller Machines, not Asynchronous Transfer Mode) to
get cash. This worked well in London and Austria, due many of
their banks using the PLUS network, and not just the Cirrus
network. It still seems rather amazing to be standing in Salzburg
giving a presentation at one of our meetings.

We will be looking forward to more presentations from other
Corporate Sponsors as the year progresses. This is one of MUUG’s
best resources for getting current industry information to you, our

Well that’s about it for MUUG business for now. I thought
some people may be interested to here a few words about the state
of technology that I saw while I was travelling thru Europe over the
last few weeks.

Our main plan while travelling had been to use ATMs
(Automated Teller Machines, not Asynchronous Transfer Mode) to
get cash. This worked well in London and Austria, due many of
their banks using the PLUS network, and not just the Cirrus
network. It still seems rather amazing to be standing in Salzburg
and getting Austrian Shillings from my bank account in Winnipeg.

The key is the bank’s choice of PLUS versus Cirrus, the large
USA bank network. Unfortunately France and Italy didn’t choose to
use the PLUS network, but anyone that uses Cirrus would likely
have no problem as many ATMs connect to the Cirrus network.

The ideal backup plan to getting cash via the PLUS network is
to use your VISA card for cash advances from the ATMs that don’t
have PLUS. Almost all the ATMs we saw had VISA access.

You may think this is an expensive way to get cash, but when
you see the bad exchange rate that many Change offices offer,
added to their high commission rates per traveller’s cheque, VISA
isn’t so bad.

The quick view I had of PC technology came from visiting large
department stores: Harrod’s in London, and Galleries Lafayette and
Printemps in Paris. Both had extensive PC departments, with
seemingly as many models as one would find here, and with pricing
very comparable to here as well, or maybe slightly higher.

I also walked by a number of smaller computer stores that looked
to offer a variety typical to a store here. So I don’t think Europe is
missing out on much of what we get here. As to whether the average
person can afford much of the technology is another question, as I
heard salaries were typically less than what we would get here.

Well that’s my quick overview of technology in Europe. Now
I’m looking forward to introducing our new board to you at the
October meeting. See you then! ✒members.

MUUG Lines 4 October 1994

PROGRAMMING

C++ Q&A
By Marshall P. Cline

Dr. Marshall P. Cline is the founder and President of Paradigm
Shift, Inc., a firm that specializes in on-site training for C++, OOD,
OOA, consulting, and reusable/extensible C++ class libraries. For
more information, send e-mail to “info@parashift.com”. ✒

of the ptr can handle the member fn, certainly the pointed-to
object can handle it as well, since the pointed-to object is of
a class that is derived from the ptr’s class).

Suppose ptr’s type is ‘List’ and the pointed-to object’s
type is ‘FastList’. Suppose the fn ‘len()’ is provided in ‘List’
and overridden in ‘FastList’. The question is: which
function should actually be invoked: the function attached to
the pointer’s type (‘List::len()’) or the function attached to
the object itself (‘FastList::len()’)?

If ‘len()’ is a virtual function, as it would be in the above
case, the fn attached to the object is invoked. This is called
‘dynamic binding’, since the actual code being called is
determined dynamically (at run time).

On the other hand, if ‘len()’ were non-virtual, the
dispatch would be resolved statically to the fn attached to the
ptr’s class.
Question 54: Can I override a non-virtual fn?
Yes but you shouldn’t. The only time you should do this is
to get around the ‘hiding rule’ (see below, and ARM
sect.13.1), and the overridden definition should be textually
identical to the base class’ version.

The above advice will keep you out of trouble, but it is a
bit too strong. Experienced C++ programmers will some-
times override a non-virtual fn for efficiency, and will
provide an alternate implementation which makes better use
of the derived class’ resources. However the client-visible
effects must be identical, since non-virtual fns are dispatched
based on the static type of the ptr/ref rather than the dynamic
type of the pointed-to/referenced object.
Question 55: Why do I get the warning “Derived::
foo(int) hides Base::foo(double) ”?
A member function in a derived class will hide all member
functions of the same name in the base class, not overload
them, even if Base::foo(double) is virtual (see ARM 13.1).
This is done because it was felt that programmers would, for
example, call a_derived.foo(1) and expect Derived::
foo(double) to be called. If you define any member
function with the name ‘foo ’ in a derived class, you must
redefine in class Derived all other Base::foo() ’s that you
wish to allow access from a Derived object (which generally
means all of them; you should [generally] not try to hide
inherited public member functions since it breaks the
‘conformance’ of the derived class with respect to the base
class).

class Base { public: void foo(int); };
class Derived : public Base {

public: void foo(double);
void foo(int i) { Base::foo(i); }
// ^ override it with itself

};

This month’s column finishes inheritance and looks at virtual
member functions — thought by some to be the key to
understanding C++. The complete C++ FAQ is now
available in book format — Addison-Wesley Publishers
0-201-58958-3 $32.25.

Question 51: Does array-of-Derived is-NOT-a-kind-of
array-of-Base mean arrays are bad?
Yes, ‘arrays are evil’ (just kidding :-).
There’s a very subtle problem with using raw built-in arrays.
Consider this:

void f(Base* array_of_Base) {
array_of_Base[3].memberfn();

}
main() {

Derived array_of_Derived[10];
f(array_of_Derived);

}
This is perfectly type-safe, since a D* is-a B* , but it is
horrendously evil, since Derived might be larger than Base ,
so the array index in f() not only isn’t type safe, it’s not
even going to be pointing at a real object! In general it’ll be
pointing somewhere into the innards of some poor D.
The fundamental problem here is that C++ cannot distin-
guish a ptr-to-a-thing from a ptr-to-an-array-of-
things (witness the required ‘[] ’ in ‘ delete[] ’ when
deleting an array as another example of how these different
kinds of ptrs are actually different). Naturally C++ ‘inher-
ited’ this feature from C.

This underscores the advantage of using an array-like
class instead of using a raw array (the above problem would
have been properly trapped as an error if we had used a
‘Vec<T> ’ rather than a ‘T[] ’; ex: you cannot pass a
Vec<Derived> to ‘f(Vec<Base>& v) ’).

Inheritance — Virtual Functions
Question 52: What is a ‘virtual member function’?
A virtual member function is a member fn preceded by the
keyword ‘virtual ’. It has the effect of allowing derived
classes to replace the implementation of the fn. Furthermore
the replacement is always called whenever the object in
question is actually of the derived class. The impact is that
algorithms in the base class can be replaced in the derived
class without affecting the operation of the base class. The
replacement can be either full or partial, since the derived
class operation can invoke the base class version if desired.
This is discussed further below.
Question53: What is dynamic dispatch? Static dispatch?
In the following discussion, ‘ptr ’ means either a pointer or a
reference. When you have a ptr to an object, there are two
distinct types in question: the static type of the ptr, and the
dynamic type of the pointed-to object (the object may actually
be of a class that is derived from the class of the ptr).

The ‘legality’ of the call is checked based on the static
type of the ptr, which gives us static type safety (if the type

MUUG Lines 5 October 1994

HANDS-ON

UNIX Q&A
Originally Compiled by Ted Timar

Submitted by Andrew Trauzzi

This month’s UNIX Q&A looks at an interesting way to pass shell
variables to awk, and getting rid of those pesky zombies.
Question 1: Is it possible to pass shell variable settings into an
awk program?
There are two different ways to do this. The first involves simply
expanding the variable where it is needed in the program. For
example, to get a list of all ttys you’re using:

who | awk '/^'"$USER"'/ { print $2 }'
Single quotes are usually used to enclose awk programs because the
character ‘$’ is often used in them, and ‘$’ will be interpreted by the
shell if enclosed inside double quotes, but not if enclosed inside
single quotes. In this case, we want the ‘$’ in “$USER” to be
interpreted by the shell, so we close the single quotes and then put
the “$USER” inside double quotes. Note that there are no spaces in
any of that, so the shell will see it all as one argument. Note,
further, that the double quotes probably aren’t necessary in this
particular case (i.e. we could have done:)

who | awk '/^'$USER'/ { print $2 }'
but they should be included nevertheless because they are necessary
when the shell variable in question contains special characters or
spaces.

The second way to pass variable settings into awk is to use an
often undocumented feature of awk which allows variable settings
to be specified as “fake file names” on the command line. For
example:

who | awk '$1 == user{ print $2 }'user="$USER" -
Variable settings take effect when they are encountered on the

command line, so, for example, you could instruct awk on how to
behave for different files using this technique. For example:
awk ‘{ program that depends on s }’ s=1 file1 s=0 file2

Note that some versions of awk will cause variable settings
encountered before any real filenames to take effect before the
BEGIN block is executed, but some won’t so neither way should be
relied upon.

Note, further, that when you specify a variable setting, awk
won’t automatically read from stdin if no real files are specified, so
you need to add a “- ” argument to the end of your command, as I
did at above.
Question 2: How do I get rid of zombie processes that perse-
vere?
Unfortunately, it’s impossible to generalize how the death of child
processes should behave, because the exact mechanism varies over
the various flavors of Unix.

First of all, by default, you have to do a wait() for child
processes under ALL flavors of Unix. That is, there is no flavor of
Unix that I know of that will automatically flush child processes
that exit, even if you don’t do anything to tell it to do so.

Second, under some SysV-derived systems, if you do
“signal(SIGCHLD, SIG_IGN) ” (well, actually, it may be SIGCLD
instead of SIGCHLD, but most of the newer SysV systems have
“#define SIGCHLD SIGCLD ” in the header files), then child
processes will be cleaned up automatically, with no further effort in
your part. The best way to find out if it works at your site is to try
it, although if you are trying to write portable code, it’s a bad idea
to rely on this in any case. Unfortunately, POSIX doesn’t allow you
to do this; the behavior of setting the SIGCHLD to SIG_IGN under
POSIX is undefined, so you can’t do it if your program is supposed
to be POSIX-compliant.

If you can’t use SIG_IGN to force automatic clean-up, then

you’ve got to write a signal handler to do it. It isn’t easy at all to
write a signal handler that does things right on all flavors of Unix,
because of the following inconsistencies:

On some flavors of Unix, the SIGCHLD signal handler is
called if one or more children have died. This means that if your
signal handler only does one wait() call, then it won’t clean up all
of the children. Fortunately, I believe that all Unix flavors for
which this is the case have available to the programmer the wait3()
call, which allows the WNOHANG option to check whether or not
there are any children waiting to be cleaned up. Therefore, on any
system that has wait3() , your signal handler should call wait3()
over and over again with the WNOHANG option until there are no
children left to clean up.

On SysV-derived systems, SIGCHLD signals are regenerated
if there are child processes still waiting to be cleaned up after you
exit the SIGCHLD signal handler. Therefore, it’s safe on most
SysV systems to assume when the signal handler gets called that
you only have to clean up one signal, and assume that the handler
will get called again if there are more to clean up after it exits.

On older systems, signal handlers are automatically reset to
SIG_DFL when the signal handler gets called. On such systems,
you have to put “signal(SIGCHILD, catcher_func) ” (where
“catcher_func ” is the name of the handler function) as the first
thing in the signal handler, so that it gets reset. Unfortunately, there
is a race condition which may cause you to get a SIGCHLD signal
and have it ignored between the time your handler gets called and
the time you reset the signal. Fortunately, newer implementations of
signal() don’t reset the handler to SIG_DFL when the handler
function is called. To get around this problem, on systems that do
not have wait3() but do have SIGCLD, you need to reset the signal
handler with a call to signal() after doing at least one wait()
within the handler, each time it is called.
 The summary of all this is that on systems that have wait3() ,
you should use that and your signal handler should loop, and on
systems that don’t, you should have one call to wait() per
invocation of the signal handler.
 One more thing — if you don’t want to go through all of this
trouble, there is a portable way to avoid this problem, although it is
somewhat less efficient. Your parent process should fork, and then
wait right there and then for the child process to terminate. The
child process then forks again, giving you a child and a grandchild.
The child exits immediately (and hence the parent waiting for it
notices its death and continues to work), and the grandchild does
whatever the child was originally supposed to. Since its parent
died, it is inherited by init, which will do whatever waiting is
needed. This method is inefficient because it requires an extra fork,
but is pretty much completely portable.

Question 3: How do I get lines from a pipe as they are written
instead of only in larger blocks?
The stdio library does buffering differently depending on whether
it thinks it’s running on a tty. If it thinks it’s on a tty, it does
buffering on a per-line basis; if not, it uses a larger buffer than one
line.

If you have the source code to the client whose buffering you
want to disable, you can use setbuf() or setvbuf() to change the
buffering.

If not, the best you can do is try to convince the program that
it’s running on a tty by running it under a pty. ✒

MUUG Lines 6 October 1994

HANDS-ON

Meet the MUUG Board Nominees for ’94/95
Since the preliminary list of nominees was published last month,
we’ve had one additional nomination — Dan Little. This leaves us
with a slate of seven nominees, which is one less than the number to
be elected to the board. The current nominees will be elected by
acclamation. An eighth member (if any) will be assigned to a
position at a later date. This will be made official with a vote on a
motion to accept the new board, most likely by a show of hands at
the October MUUG meeting. Here are the seven nominees (in no
particular order).

Bary Finch
Bary Finch has been with IBM for five years as a Systems Engi-
neering Representative. He has specialized in AIX and the RISC
System/6000 since its announcement. Previously he has worked as
a Systems Analyst in the Engineering Department of Versatile Farm
Equipment, and as a Programmer Analyst at both Westfair Foods
and Canadian Indemnity. Bary holds a B.Sc. in Computer Science
from the University of Manitoba. Last year, Bary was the President
of MUUG serving his second term on the board. Previously, he
worked with Susan Zuk to develop the Corporate Sponsorship
program, and helped start the first Special Interest Group (SIG) for
MUUG. Bary looks forward to another year of serving on the
board, and helping MUUG grow even more to meet the needs of the
membership.

Rory Macleod
Rory Macleod is an Integrated Systems Consultant for the Midwest
District of Xerox Canada Ltd. Rory has been with MUUG for over
a year. In that time, Rory has gratiously helped with the production
of the newsletter. Xerox has agreed to photocopy the newsletter as
their form of corporate sponsorship of MUUG.

Andrew Trauzzi
Andrew Trauzzi has been with the City of Winnipeg for 6 years as a
programmer/analyst. He has been working with UNIX since 1986,
and currently works with UNIX machines both at home and at
work. His current project could be described with a large number of

buzzwords, but can be summed up as a tax certificate request
system using C++ and Sybase on PC and UNIX platforms.
Previously, Andrew obtained his B.C.Sc. at the U of M, and has
been an active member of the MUUG for three years.

Doug Mclean
Doug Mclean has 16 years experience in the information systems
management industry. He is a graduate of the University of
Manitoba, with a BSc in Computer Science. Doug spent 3 years
with Wawanesa Insurance as both an application and systems
programmer before joining Manitoba Data Services (MDS). AT
MDS, Doug was a systems programmer specializing in wide area
networking. Later in his career at Information Systems Manage-
ment Corp (ISM) he provided sales and marketing support for
systems outsourcing and distributed computing environments. Doug
is currently with SHLSystemhouse where he is a Project Manager
for Network and Systems Management solutions. He is also
involved in the marketing and implementation of UNIX based
solutions. For over 2 years Doug has been working with Unix
based solutions for the IBM, HP and SUN platforms.

Roland Schneider
Roland Schneider recently completed his PhD in Electrical
Engineering. He started working with UNIX in 1984 when the EE
department got its first workstation and administered the
department’s network of Sun workstations. He and his brother
started a software consulting company specializing in engineering
applications.

Doug Shewfelt
Doug Shewfelt has a B.C.Sc, M.Sc. and MBA, all from the
University of Manitoba. He is a senior analyst/programmer for the
City of Winnipeg Computer Services Department, supporting the
Fire and Ambulance Departments. Last year he served on the
speaker selection committee for the MUUG/CIPS fall seminar.

Dan Little
An autobiography for Dan was unavailable at press time.✒

The Fortune File

Unix Airline: Everyone brings one piece of the plane with them
when they come to the airport. They all go out on the runway and
put the plane together piece by piece, arguing constantly about what
kind of plane they’re building. When another plane lands nearby
the passengers begin breaking up into meetings and trading pieces
of the plane.
Fly NT: Everyone marches out on the runway, says the password in
unison, and forms the outline of an airplane. Then they all sit down
and make a whooshing sound like they’re flying. The flight
attendant then announces that soon all flying will be just like this.
DOS Airline: Everybody pushes the airplane until it glides, then
they jump on and let the plane coast until it hits the ground again,
then push again, jump on again, and so on. For relaxation Bill’s
autobiographies are tucked in the back of every seat.
MAC Airways: All the flight attendants, captains, baggage
handlers, and ticket agents look the same, act the same. Every time
you ask questions about details, you are told you don’t need to
know, don’t want to know, and everything will be done for you
without you having to know, so just shut up. Cute little signs are
everywhere and outside every window there are flying toasters.
Windows Airline: The airport terminal is nice and colorful with
friendly flight attendants, easy access to the plane, an uneventful
takeoff...then the plane blows up without any warning whatsoever.

In mid-air you are informed that the rest of your flight will be
continued on DOS airline. (See DOS Airline)
Newton Airline: After buying your ticket 18 months in advance,
you finally get to board the plane. Upon boarding the plane you are
asked your name. After 46 times, the flight attendant recognizes
your name and then you are allowed to take your seat. As you are
getting ready to take your seat, the flight attendant announces that
you have to repeat the boarding process because they are out of
room and need to re-count to make sure they can take more
passengers.
NeXT Airline: Everyone gets a paint-brush and paints the airport
terminal. Right before takeoff they are told that the plane will have
only one engine and that the air-phones can only be used to call
other NeXT Airline planes. On take-off you are told that its
peanuts all the way — Every time you ask for food/beverages you
are told that other food/beverage items are not necessary and that
these peanuts have no fat and come in a wonderful black bag, with
Steve’s picture and personal greetings!
VMS Airline: Everyone has difficulties getting into the plane and
once they are in it starts to make a lot of noise and takes off very
slow. The plane only blows up if you think you are safe. Occasion-
ally the captain mumbles, “off to the left of the aircraft, you can see
the Unix desert, and don’t worry — we won’t be going over there.”

What if Operating Systems were Airlines?

MUUG Lines 7 October 1994

INDUSTRY

Get the Visual Edge
By Andrew Trauzzi

With the explosion of graphical-based applications (caused by you-
know-who), GUI builders and code generators seem to be more
popular than now then ever before. As usual, we find a dispropor-
tionate number of vendors slugging it out in the PC arena, while the
UNIX world seems relatively quiet. Sometimes keeping quiet is
good — it shows that you are actually thinking instead of figuring
out what your competition is doing.

My recent experiences with PC-based GUI builders and 4GL’s
has left a bad taste in my mouth, so I gave them up for a while.
Eventually, it became necessary for me to research UNIX-based
GUI builders. UNIX users are a picky lot — we are very demand-
ing and quickly abandon products that are not up to snuff. Maybe
that’s why I was so impressed with the quality and features I found
in UNIX GUI builders. Of all the code-generators and screen
painters out there (and there are many!), one product in particular
stood out — UIM/X.

I had a personal mental ‘wish-list’ of GUI builder features. I
thought most should be standard features, some were a little
unrealistic, and a few were downright crazy! UIM/X met them all,
and even had a few that I never even considered. The rest of this
article consists of a product overview that I requested from Visual
Edge — the Montréal company that developed UIM/X. If you have
any questions or comments, you can either contact me at
<editor@muug.mb.ca > or:

Visual Edge Software Ltd.
3870 Cote Vertu

St-Laurent, Quebec
H4R 1V4

(514) 332-6430
(514) 332-5914 (Fax).

Standards
UIM/X 2.5 fully supports standards so GUI software development
investment is protected. It generates K&R C, ANSI C or C++, and
pure Motif code (as an option) with no dependence on convenience
libraries. In addition, UIM/X 2.5 generates code which conforms to
the Object Management Group’s CORBA C API specification; it
also reads and writes UIL.

UIM/X 2.5 supports 100% of the OSF/Motif Toolkit release
1.2—all shells, widgets, gadgets, convenience dialogs and re-
sources. UIM/X 2.5 handles even difficult resources such as
XmNcolormap (for graphics applications) and XmNinsertPosition
(for building dynamically growing menus). UIM/X 2.5 enables
developers to build production quality, style guide-compliant
interfaces without the need to modify generated C code and set
resources or create widgets that the GUI builder doesn’t handle.

Layout
UIM/X 2.5 comes with a preconstructed, style guide-compliant
application framework to minimize the time and effort necessary to
ensure standards compliance. The framework also serves as an
excellent introduction to a wide variety of OSF/Motif techniques.
In addition, UIM/X customers can build and enforce corporate or
project-wide GUI style guidelines.

UIM/X 2.5 was designed to move the programmer quickly up
the learning curve. It provides everything one has come to expect
from an easy-to-use WYSIWYG drawing editor... and more. A
developer can create widgets (or widget hierarchies) from user-
customizable palettes, pulldown menus, or short cut pop-up menus.
Those widgets can then be selected and moved or resized as a

group. And, with UIM/X 2.5 it is possible to use various operations
— like cut, copy, paste, and align — to speed the development task.
Moreover, the tool also comes with a wide variety of specialized
editors — all smoothly integrated through the consistent use of a
drag-and-drop metaphor.

The UIM/X 2.5 Widget Property Editor lets developers edit the
properties of multiple widgets and components at the same time, so
it is easy to work quickly. UIM/X 2.5 comes complete with color,
font, pixmap, and callback selectors/editors—or developers can add
their own, if desired. This editor also gives lists of options to
choose from, so it is easy to set resource values.

The UIM/X 2.5 Widget Tree Browser lets programmers see
and edit the entire widget hierarchy of an interface in either tree or
outline form. They get real time feedback as they select, drag and
drop widgets to rearrange or reorder the widget hierarchy. This
greatly simplifies the task of understanding and editing complex
interfaces.

The UIM/X 2.5 Menu Editor lets developers quickly and easily
create pop-up, pull-down, and option menus (all of which have a
very complex structure in OSF/Motif). They can set labels,
accelerators, mnemonics, callbacks, etc.; it has everything develop-
ers need to build and edit menus in a fraction of the time it would
take to construct them widget by widget.

The UIM/X 2.5 Main Window Editor lets the developer view
and set—with a graphical editor—the variety of options that OSF/
Motif main windows provide.

UIM/X 2.5 lets developers build and edit palettes which hold
customized templates of widgets, widget hierarchies, and/or
components. From palettes, they can either create duplicates of
their templates one at a time, or create arrays of duplicates. UIM/X
palettes save time not only on the current project, but also on
subsequent projects.

Behavior
UIM/X 2.5 lets developers type their C code callback directly into a
specialized Callback editor. UIM/X 2.5 keeps the callback code as
part of the definition of the project, so there’s no need to modify
generated C code, or merge in their changes each time the GUI is
modified. They have access to all callback arguments, and can set
XmNclientData. They can use any X, Xm, or Xt function calls—
they are all linked in to UIM/X 2.5. UIM/X 2.5 provides develop-
ers with the full flexibility of hand coding, without the problems of
keeping callback code consistent with their GUI.

UIM/X 2.5 also has editors to help developers specify
Application Window behavior (the area where they would draw in a
drawing program, for example). They graphically choose events,
and tie them to the C code actions they have created. These
“Translation Tables” can be used to customize the behavior of
existing widgets. UIM/X 2.5 handles the full toolkit capability of
translation tables. It supports the entire job of building a GUI, so
there’s no need to resort to modifying generated C code.

UIM/X 2.5 lets programmers enter a C expression for the
value of any property, so they can determine initial values at
runtime—without hand-modifying files of generated code. This
feature is essential for building X/OPEN-compliant international
applications.

UIM/X 2.5 has a library of convenience functions developers
can use to handle the programming of behavior. The UIM/X 2.5

MUUG Lines 8 October 1994

convenience library significantly reduces complexity and code size
compared to programming in straight OSF/Motif code (which they
are free to do in UIM/X 2.5, if they wish). The UIM/X 2.5
convenience library is available on a wide variety of platforms
(source is also available), so programmers can port their code to any
platform, independent of GUI tool vendor.

Testing
UIM/X 2.5 has an integrated C interpreter, so developers can test
the interface with their underlying application connected and
running. The interpreter can mix compiled and interpreted code, so
they can call their compiled functions, or incrementally compile
their interfaces for performance.

The UIM/X 2.5 C interpreter is tightly integrated so there is no
need to generate code, recompile, relink, and restart execution every
time a developer makes a change to the interface. In addition, the
UIM/X 2.5 C interpreter is specifically designed to leverage the
development of the GUI. For example, when there is a C code
error, it tells the developer specifically which widget and resource
to look at. With UIM/X 2.5 there’s no need to “work backwards”
from line numbers to find errors.

UIM/X 2.5 enables developers to put custom C code virtually
anywhere in their interface. With UIM/X 2.5, they don’t have to
manually keep generated C code files consistent with their
interfaces. Hence, their turnaround cycles are shorter and their life-
cycle costs are lower.

Reusability
UIM/X 2.5 lets programmers construct their
interfaces out of reusable GUI object classes
called “Components.” Components feature
encapsulation, inheritance and polymorphism —
which means that UIM/X 2.5 provides all the
benefits of Object Oriented Programming (OOP) to
GUI developers.

Components comply with the Object Management
Group’s CORBA C API specification, so a company’s
investment in OOP is 100% protected. Developers simply
use drag-and-drop to create Components from widgets, or
widget hierarchies. This natural visual metaphor works the
way people do — they build something, then they generalize and
reuse it — so it is easy for developers to work quickly.

Once a Component has been built, it can be placed in the
palette for reuse. Gaining the benefits of reusability has never been
so interactive, so easy, or so intuitive. And, if a developer changes
the original Component class definition, all instances of it are
immediately updated. This change propagation provides developers
with tremendous productivity improvements.

Components provide full encapsulation, so ongoing software
development and maintenance costs are minimized. Components
can be given both public and private instance properties. These
instance properties (which may or may not be Motif-related) are
specified by the developer.

When instances of a Component are placed in the property
editor, only their public properties appear. To select values for
these public properties, developers can use all the features they
have come to expect in UIM/X — option menus, built-in property
editors like color, font, and pixmap editors — or they can add their
own editors.

Developers treat Component classes identically to widgets;
there is no additional learning curve involved.

UIM/X 2.5 was designed so that the details of a Component’s
implementation are hidden from developers. Components can be
given methods using the UIM/X 2.5 Method Editor, so encapsula-

tion is complete. Because of this encapsulation, “Component
developers” can configure UIM/X for other developers so as to
simplify the task of building interfaces and/or following corporate
standards.

When code for the project is generated, the implementation of
Components is kept separately from the GUIs where they are used.
The generated code for the interfaces where they are used contains
only calls to the Component’s public interface. Consequently, even
if a Component’s implementation changes, the GUIs where that
Component is used are not affected (resulting in reduced software
maintenance costs).

The encapsulation, inheritance and polymorphism provided by
UIM/X 2.5 Components mean that companies gain the benefits of
OOP for their GUI development from Day One.

Building components also makes it easy to develop — and
maintain — corporate standards. Developers simply relink their
application to take full advantage of any revisions to the standard.

UIM/X 2.5 components can also be used to cost-effectively
build applications which are readily ported across platforms.
Developers construct their interfaces entirely out of custom-built
portable GUI component classes which they create using drag-and-
drop. The resulting interface code is portable and separate from
their GUI component implementation. With UIM/X 2.5, develop-
ers are finally able to pick the level of abstraction for GUI classes
that is just right for their interfaces, instead of having to rely on a
“lowest common denominator” toolkit approach.

UIM/X 2.5 also automatically generates the
Motif code for developers’ portable GUI
components. This means that developers gain

vastly superior portable interfaces for a fraction
of the cost it would take to manually create their

own portability layer.
UIM/X 2.5 can even be used interactively to

take existing GUIs and “layer” them for portability.
With UIM/X 2.5, developers no longer face the

daunting task of a total GUI rewrite to move their
applications across platforms.

Code Generation
UIM/X 2.5 generates either K&R C, ANSI C, or C++ code, and
either pure OSF/Motif code or UIM/X 2.5 convenience library
code. This assures that programmers’ software development
investment is protected, and their work can be ported.

UIM/X 2.5 takes advantage of the object oriented features of
C++. All Components developers have created are generated as
true C++ classes. Public and private properties of Components
become public and private data members and methods become
member functions. Further, the generated code for any interface (or
class) that contains a Component creates and manipulates the
Component using its C++ Application Programming Interface
(API). The associated benefit is that developers gain productivity
leverage in two ways: first, through the generation of reusable
code; and second, through its use.

Because UIM/X 2.5 is compliant with the CORBA C API, all
of the object-oriented C code that is written for Components still
works when the Components are generated as C++ classes. As a
result, developers have a smooth migration path from C to C++;
they gain most of the benefits of object oriented programming today
using C and, when they are ready to make the switch to C++, they
simply change a code generation option. All of their object-
oriented C code becomes well-structured C++ code, and their initial
investment in object oriented development remains 100% protected.

UIM/X 2.5 has a Declarations Editor to let developers
customize the template for code generation on an interface-by-

INDUSTRY

MUUG Lines 9 October 1994

interface basis. They can declare global variables, #defines, and
include files. They can modify the declaration of generated
functions, even add arguments to them. Moreover, these arguments
can be used in the resource slots of widgets to create parametric
interfaces. The flexibility UIM/X 2.5 provides in code generation
means that developers won’t have to abandon the tool after their
first round of prototyping and code manually from that point on;
UIM/X 2.5 will take them from prototype stage all the way to
production software.

Large Project Support
UIM/X 2.5 is designed to work with large development projects in a
corporate environment. The tool can ensure compliance with
project- or corporate-wide standards, and it can be used to create
and integrate reusable tools. In other words, UIM/X 2.5 leverages
the entire GUI development process.

UIM/X 2.5 enables corporations or project groups to create
and enforce style guidelines. They can build style guide prototypes.
They can control on a widget-by-widget basis what resources may
be changed, and designate the allowable values for those resources.
In addition, they can control on a widget-by-widget basis what
operations (e.g. moving, resizing, deleting, reordering, etc.)
developers can perform on a widget. This ensures that the project’s
or corporation’s style guide prototypes remain intact. No other tool

provides this level of completeness in creating and ensuring
strict adherence to project or corporate GUI style guidelines.

UIM/X 2.5 can be integrated with project- or corporate-wide
CASE tools and development environments. It supports integration
with both data-driven CASE tools such as repositories (or, more
simply, SCCS and RCS), and message-driven frameworks such as
Hewlett Packard’s Softbench. UIM/X 2.5 makes it easy for
programmers to follow a software development methodology, and
for companies to ensure that their developers follow established
standards and guidelines.

The seamless integration of UIM/X 2.5 and CASE tools such
as Softbench means that from within UIM/X 2.5, developers can:
1) check files in and out of configuration control; 2) use vi, emacs,
or their favorite editor to edit files of text; and 3) use their favorite
build tool to create the final executable. By providing a single,
integrated development environment for the entire application,
UIM/X 2.5 reduces project turnaround time even further.

UIM/X 2.5 assists developers in documenting their interfaces
by automatically generating documentation of the GUI structure
and hierarchy. This helps organizations reduce downstream
maintenance costs for their GUIs ... an issue that will become of
increasing importance over time.

UIM/X 2.5 puts the developer in control of the entire GUI
development process. It can load, save, or write code for an entire
project. And, developers can incrementally compile interfaces and
integrate them into their development environment. UIM/X 2.5
generates a main program and a makefile for a project. Program-
mers can edit these within UIM/X 2.5 to add their own initialization
code, makefile rules and libraries. There is no need to modify the
generated code or re-integrate changes to a customized makefile
each time a new interface is added to the project.

Extensibility and Programmability
UIM/X 2.5 is extensible. Developers can fully integrate their own
widgets into UIM/X 2.5. As a result, they can use UIM/X 2.5 to
leverage past investments they have made in building custom
widgets.

UIM/X 2.5 is programmable. Developers can add operations
and editors to UIM/X 2.5 using internal UIM/X 2.5 functions. In
fact, by using UIM/X 2.5, they can create their own custom GUI
builder.

Market- and Application-Specific GUI Builders
UIM/X 2.5 consists of a core GUI Builder Engine, surrounded by a
wide variety of configurable editing tools and capabilities. Given
this architecture, UIM/X can be configured rapidly to create
market- or application-specific GUI builders. In fact, with UIM/X
2.5, a custom production-quality GUI builder can be created in a
mere fraction of the time it would take to build one from scratch.

Currently, a variety of software developers, resellers and
systems integrators are using the UIM/X Builder Engine to create
either market- or application-specific builders for resale/redistribu-
tion. By utilizing UIM/X 2.5, they can focus on their added value
... rather than diverting resources to GUI builder technology.

UIM/X 2.5 can also be simplified for use by non-OSF/Motif
programmers. In fact, UIM/X can be made to look like a simple
drawing program, if desired. Developers simply remove menu
entries and editor functionality. They can hide complex resources,
change resource names and provide new resource editors. They can
also combine individual widgets into “Compound Widgets” and
treat them as a single entity. Compound widgets can be selected,
moved, resized, etc. as a single unit, and they can have their own
custom editors (e.g. radio buttons with a radio button editor).
Developers can also reduce testing capability and hide the C
interpreter, or make UIM/X 2.5 into a layout-only tool.

With UIM/X 2.5, developers can cost-effectively create
custom GUI builders tailored to users who are not OSF/Motif
literate (e.g. - user interface specialists, retrained COBOL program-
mers, DBMS application experts, CAD programmers and the like).

UIM/X 2.5 can also be tailored to support a 4GL. Program-
mers can replace the UIM/X 2.5 code generation module with their
own 4GL or “easy-to-use language” code generator. Moreover,
they can incorporate an additional preprocessor to work with
languages embedded in C. Or, they can add new resources and
editors to the widgets (or compound widgets) that their code
generators might require. In this way, customers who aren’t OSF/
Motif literate can work with languages familiar to them.

UIM/X 2.5 provides full access to its X/OPEN-compliant
message catalog. Developers can change labels, messages, resource
names, etc., and they can add their own messages. With UIM/X,
they can make a custom builder look like their own, and then
expand their market opportunities by localizing the builder for
international use.

End-User Customization
UIM/X 2.5 can be used to provide end-user customization for
applications — within the bounds of corporate standards or
application requirements. Particular UIM/X 2.5 editing capabilities
can be integrated into the application in one of two ways: 1) UIM/
X can be a separate (tailored) application that generates
customization files; or 2) UIM/X can execute as a run-time module,
and load the application from a database. In either case, program-
mers can significantly reduce their development costs by leveraging
UIM/X 2.5 GUI technology.

Further addition from Visual Edge for UIM/X:

Cross-Platform Toolset (CPT) — The toolset embodies a cross-
platform methodology, and includes a collection of pre-built GUI
classes. Together, they allow developers to build portable GUIs on
Motif, and deploy them on a variety of target platforms. This initial
release offers a single development, multiple deployment strategy
— OSF/Motif and Microsoft Windows 3.1 are the target platforms
supported (with Windows NT support planned for Q2). ✒

INDUSTRY

MUUG Lines 10 October 1994

MEETINGS

Agenda
for

Tuesday, October 13, 1994, 7:30 PM
Samuel N. Cohen Auditorium

St-Boniface Hospital Research Centre
Main Floor, 351 Taché

SIG Sideline
By Brad West, SIG Coordinator

1. President’s Welcome 7:30

3. Business Meeting 7:35
a) Old Business
b) New Business

5. Presented Topic 7:45
As this month is our Annual General
Meeting (AGM), we will be holding
elections for the 1994-1995 board. For a
complete list of board nominees, please refer
to page 6.
Following the elections, a 45-minute video
on Asynchronous Transfer Mode (ATM)
will be shown. Sorry, no popcorn is allowed
in the lecture theatre!

4. Coffee Break and Informal Discussion 9:00

Note: Please try to arrive at the meeting between 7:15 and
7:30, to avoid disrupting the meeting in progress.✒

The new season has started and we had a good turnout for our
Sept. 20 meeting. The meeting started with the round table
format. The topics dealt mostly around Linux with discus-
sions from setting up X-windows, how stable it is, network
capabilities, what CD-ROM support is available, where is a
good FTP site for Linux software (sunsite.unc.edu recom-
mended) and what’s new in Linux. Greg Moeller graciously
brought everyone up to date on what’s new in Linux. Some
of the highlights were: Slackware is now at Version 2.0 with
the stable Linux kernel at 1.0.8, and it now has token-ring
support. Also, Linux is now being adopted by GNU. On a
more Important note :) DOOM is now available on Linux.
If anyone is interested in being a guest speaker at a SIG
meeting or you have a specific topic of interest, let me know.
I can be reached by email <bwest@muug.mb.ca > or my work
phone is 983-0336. The presentation for next month’s
meeting will be announced. The next meeting is scheduled
for Tuesday, October 11, at 7:30 PM. This meeting will
again be held at ISM, 400 Ellice Avenue, behind Portage
Place. Our host is Wolfgang von Thuelen. He will be waiting
in the lobby as of 7:15 PM to let everyone in. Hope to see
you all at the meeting. ✒

Coming Up
Meeting:
Next month’s meeting is scheduled for Tuesday,
November 8, at 7:30 PM. Meeting location will be the
St-Boniface Research Centre, as usual. The March
meeting topic is security. Stay tuned for details.

Got any ideas for meeting topics? Any particular
speaker, company, or product you’d like to see at one of
our meetings? Just let our new meeting coordinator,
Roland Schneider, know. You can e-mail him at
<rsch@muug.mb.ca >.

Newsletter:
If you are interested in a particular topic, let me know.
I’m sure I could coerce you into writing an article! I
could use a few articles — especially shorter ones — half
a page to one page (400 to 1000 words) would be fine.

Monsieur Ex has also let me know that his mail-box has
room for more of your wonderful queries again – please
submit your questions to the old guy via e-mail to
<m-ex@muug.mb.ca >. He may be old, but he’s not ready
for retirement yet!

Accent Server News
Free Big Dummy Guide to the Internet Available

The Electronic Frontier Foundation publishes the Big
Dummy’s Guide to the Internet. Although the author, Adam
Gaffin, admits that it doesn’t include everything about the
Internet, it does include much useful information about
getting started. We think it’s a pretty good introduction,
especially because you can get monthly updates to stay
current with the latest developments.

To obtain a copy of the entire Big Dummy’s Guide to
the Internet, use anonymous ftp to connect to ftp.eff.org
and look in the /pub/Net_info/Big_Dummy directory, or use
gopher to connect to gopher.eff.org and then select Net
Info and then Big Dummy. You can also get one by sending
“62.27 ” in the subject of your message to flashadm
@sun.com. (Try “65.01 ” for updated information.)
The Big Dummy Update is available by several routes. It is
posted monthly on USENET in the comp.org.eff.talk ,
alt.internet.services and news.newusers.questions
newsgroups. To receive the newsletter by e-mail, send a
message to big-dummy-update-request@eff.org. As the
message, write: add big-dummy-update (don’t include your
name).

For general information on the Electronic Frontier Founda-
tion, send an e-mail message to info@eff.org . ✒

