

FREE TRIAL LEARN MORE

flawless
application

delivery
Load

Balancer
Content
Cache

Web
Server

Security
Controls

Monitoring &
Management

https://www.nginx.com/free-trial-request/?utm_source=oreilly&utm_campaign=modern-php&utm_medium=ebook
https://www.nginx.com/products/?utm_source=oreilly&utm_campaign=modern-php&utm_medium=ebook

This is an excerpt of the book Modern PHP. The full book is
available at oreilly.com and through other retailers.

Josh Lockhart

Modern PHP
New Features and Good Practices

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-90501-2

[LSI]

Modern PHP
by Josh Lockhart

Copyright © 2015 Josh Lockhart. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Nicole Shelby
Copyeditor: Phil Dangler
Proofreader: Eileen Cohen

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

February 2015: First Edition

Revision History for the First Edition
2015-02-09: First Release
2016-02-26: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491905012 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Modern PHP, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491905012

Table of Contents

Foreword. vii

Part I. Deployment, Testing, and Tuning

1. Hosting. 1
Shared Server 1
Virtual Private Server 2
Dedicated Server 3
PaaS 3
Choose a Hosting Plan 4

2. Provisioning. 5
Our Goal 6
Server Setup 6

First Login 6
Software Updates 7
Nonroot User 7
SSH Key-Pair Authentication 8
Disable Passwords and Root Login 10

PHP-FPM 10
Install 10
Global Configuration 11
Pool Configuration 12

Nginx 15
Install 15
Virtual Host 15

Automate Server Provisioning 18

iii

Delegate Server Provisioning 18
Further Reading 19
What’s Next 19

3. Tuning. 21
The php.ini File 21
Memory 22
Zend OPcache 23
File Uploads 24
Max Execution Time 25
Session Handling 26
Output Buffering 27
Realpath Cache 27
Up Next 27

4. Deployment. 29
Version Control 29
Automate Deployment 29

Make It Simple 30
Make It Predictable 30
Make It Reversible 30

Capistrano 30
How It Works 30
Install 31
Configure 31
Authenticate 33
Prepare the Remote Server 33
Capistrano Hooks 34
Deploy Your Application 34
Roll Back Your Application 35

Further Reading 35
What’s Next 35

5. Testing. 37
Why Do We Test? 37
When Do We Test? 38

Before 38
During 38
After 38

What Do We Test? 38
How Do We Test? 39

Unit Tests 39

iv | Table of Contents

Test-Driven Development (TDD) 39
Behavior-Driven Development (BDD) 39

PHPUnit 40
Directory Structure 41
Install PHPUnit 42
Install Xdebug 42
Configure PHPUnit 43
The Whovian Class 44
The WhovianTest Test Case 45
Run Tests 47
Code Coverage 48

Continuous Testing with Travis CI 49
Setup 49
Run 50

Further Reading 50
What’s Next 51

6. Profiling. 53
When to Use a Profiler 53
Types of Profilers 53
Xdebug 54

Configure 54
Trigger 55
Analyze 55

XHProf 55
Install 56
XHGUI 56
Configure 57
Trigger 57

New Relic Profiler 57
Blackfire Profiler 58
Further Reading 58
What’s Next 58

7. HHVM and Hack. 59
HHVM 59

PHP at Facebook 60
HHVM and Zend Engine Parity 61
Is HHVM Right for Me? 62
Install 62
Configure 63
Extensions 64

Table of Contents | v

Monitor HHVM with Supervisord 64
HHVM, FastCGI, and Nginx 66

The Hack Language 67
Convert PHP to Hack 67
What is a Type? 68
Static Typing 69
Dynamic Typing 70
Hack Goes Both Ways 70
Hack Type Checking 71
Hack Modes 71
Hack Syntax 72
Hack Data Structures 74
HHVM/Hack vs. PHP 75

Further Reading 76

8. Community. 77
Local PUG 77
Conferences 77
Mentoring 78
Stay Up-to-Date 78

Websites 78
Mailing Lists 78
Twitter 78
Podcasts 78
Humor 79

vi | Table of Contents

Foreword

Back in 1995, software engineer Rasmus Lerdorf needed an easier way to maintain his
own web page, and wrote a set of programs he called Personal Home Page, or PHP.
He soon open sourced the software, but never anticipated it would become the domi‐
nant web-page programming language it is today, Now, PHP powers more than 80%
of websites that report the language they use, according to W3Techs. PHP usage
extends well beyond personal blogging sites to giants like Facebook, Twitter, and
Wikipedia.

The longevity and popularity of PHP has both pros and cons. The positive is that you
can easily find lots of PHP tutorials and other resources online. The downside is that
many of the existing resources still recommend outdated practices that result in slow
and unstable apps. To address this problem, Josh Lockhart has written Modern PHP,
the go-to resource today’s developers have desperately needed to help them modern‐
ize their PHP apps.

As you update your approach to developing PHP apps, it also makes sense to recon‐
sider how you’re delivering them. The Apache HTTP server debuted when the inter‐
net was new, and worked fine at the time. But NGINX is purpose-built to handle the
vastly greater demands that your apps now face, with an event-driven design that is
much lighter-weight and uses fewer system resources than Apache. The result is
higher performance from your PHP applications.

Once your PHP app is deployed to production and gains in popularity, you’ll need to
scale. NGINX Plus, our enterprise-grade product, is commonly found in the reverse
proxy position in front of PHP app servers. NGINX Plus offers a number of advanced
features, such as load balancing with health checks and session persistence, that you
can use to safely scale out your PHP applications. It also comes with 24x7 support,
which is critical for maintaining the production applications businesses depend on.

We hope you enjoy this excerpt from Modern PHP. It includes all of Part 3, covering
tuning, testing, and deployment of PHP applications.

— Faisal Memon
Product Marketer, NGINX Inc.

vii

https://en.wikipedia.org/wiki/PHP
https://w3techs.com/technologies/details/pl-php/all/all
https://w3techs.com/technologies/details/pl-php/all/all
https://www.nginx.com/blog/nginx-vs-apache-our-view/
https://www.nginx.com/blog/nginx-vs-apache-our-view/

PART I

Deployment, Testing, and Tuning

CHAPTER 1

Hosting

So you have a PHP application. Congratulations! However, it doesn’t do anyone any
good unless your users can, you know, use it. You need to host your application on a
server and make it accessible to its intended audience. Generally speaking, there are
four ways to host PHP applications: shared servers, virtual private servers, dedicated
servers, and platforms as a service. Each has its unique benefits and is suitable for dif‐
ferent types of applications and budgets.

There are also many web hosting companies, and it can be overwhelming if you are
brand new to the web hosting landscape. Some hosting companies provide only
shared servers. Other companies provide a mix of shared servers, virtual private
servers, and dedicated servers. This chapter will focus less on the companies them‐
selves and more on hosting options.

Shared Server
A shared server is the most affordable hosting option and costs $1–10/month. You
should avoid shared hosting plans. This is not a commentary on shared hosting com‐
panies’ quality of service or customer support. There are many good shared hosting
companies. Simply put, shared hosting options are not developer-friendly.

A shared server, as its name implies, means that you share server resources with other
people. If you purchase a shared hosting plan, your hosting account lives on the same
physical machine as many other customers’. If your particular machine has 2 Gb of
memory, your PHP application might receive only a fraction of that memory,
depending on how many other customer accounts live on the same machine. If
another account on the same machine runs a poorly coded script, it can negatively
affect your own application. Some shared hosting companies oversell shared servers,

1

and your PHP application constantly battles for system resources on a crowded
machine.

Shared servers are also very difficult to customize. For example, your application may
need Memcached or Redis for a fast, in-memory cache. You may want to install Elas‐
ticsearch to add search functionality to your application. Unfortunately, shared server
software is difficult—if not impossible—to customize. Your applications suffer as a
result.

Shared servers rarely provide remote SSH access. Instead, you’re often handicapped
with (S)FTP access only. This limitation severely restricts your ability to automate
PHP application deployment.

If your budget is super-small or your needs extremely modest, a shared server may be
sufficient. However, if you’re building a business website or a moderately popular
PHP application, you’re better off using a virtual private server, a dedicated server, or
a PaaS.

Virtual Private Server
A virtual private server (VPS) looks, feels, and acts like a bare-metal server. But it’s
not a bare-metal server. A VPS is a collection of system resources that are distributed
across one or many physical machines. A VPS still has its own filesystem, root user,
system processes, and IP address. A VPS is allocated a specific amount of memory,
CPU, and bandwidth—and they’re all yours.

VPSs provide more system resources than a shared server. A VPS provides root SSH
access. And a VPS does not limit what software you can install. Great power, though,
comes with great responsibility. VPSs give you root access to a virgin operating sys‐
tem. It is your responsibility to configure and secure the operating system for your
PHP application. VPSs are ideal for most PHP applications. They provide sufficient
system resources (e.g., CPU, memory, and disk space) that scale up or down on
demand. A VPS costs $10–100/month based on the amount of system resources
needed by your PHP application. If your PHP application becomes super-popular
(hundreds of thousands of visitors a month) and a VPS becomes too costly, you
might consider upgrading to a dedicated server.

I almost always prefer VPSs for their balance of cost, features, and
flexibility. Linode, my favorite hosting company, provides VPS and
dedicated hosting plans. Linode isn’t the cheapest option, but my
personal experience shows Linode is fast and stable, and it comes
with a vast treasure of helpful tutorials.

2 | Chapter 1: Hosting

http://memcached.org
http://redis.io
http://www.elasticsearch.org
http://www.elasticsearch.org
https://linode.com

Dedicated Server
A dedicated server is a rack-mounted machine that your hosting company installs,
runs, and maintains on your behalf. You configure dedicated servers to your exact
specifications. Dedicated servers are real machines that must be transported,
installed, and monitored. They cannot be set up and configured as quickly as VPSs.
That being said, dedicated servers provide the ultimate performance for demanding
PHP applications.

Dedicated servers act much like VPSs. You get root SSH access to a virgin operating
system, and you must secure and configure the operating system for your PHP appli‐
cation. The benefit of a dedicated server is cost-effectiveness. Eventually a VPS
becomes too costly as you consume more system resources. You save money by
investing in your own infrastructure.

A dedicated server costs hundreds of dollars per month depending on the server
specifications. It can be unmanaged (i.e., you manage the server yourself) or man‐
aged (i.e., you pay extra for your hosting company to manage the server).

PaaS
Platforms as a service (PaaS) are a quick way to launch your PHP application, and—
unlike with a virtual private or dedicated server—you don’t have to manage a PaaS.
All you have to do is log into your PaaS provider’s control panel and click a few but‐
tons. Some PaaS providers have a command-line or HTTP API with which you can
deploy and manage your hosted PHP applications. Popular PHP PaaS providers
include:

• AppFog
• AWS Elastic Beanstalk
• Engine Yard
• Fortrabbit
• Google App Engine
• Heroku
• Microsoft Azure
• Pagoda Box
• Red Hat OpenShift
• Zend Developer Cloud

PaaS pricing varies by provider but is similar to virtual private servers: $10–100/
month. You pay for the system resources allocated to your PHP application. System

Dedicated Server | 3

https://appfog.com/
https://aws.amazon.com/elasticbeanstalk/
https://www.engineyard.com/features
http://fortrabbit.com/
http://bit.ly/g-app-engine
https://devcenter.heroku.com/categories/php
https://azure.microsoft.com/
https://pagodabox.com/
https://www.openshift.com/
http://bit.ly/z-dev-cloud

resources can be scaled up or down on demand. I recommend PaaS hosting plans for
developers who do not want to manage their own servers.

Choose a Hosting Plan
Choose only what you need when you need it. You can always scale your hosting
infrastructure up or down when necessary. For small PHP applications or prototypes,
a PaaS provider like Engine Yard or Heroku is the best and quickest solution. If you
prefer more control over your server configuration, get a VPS. If your application
becomes super-popular and your VPS is buckling beneath the weight of millions of
visitors (congratulations, by the way!), get a dedicated server. Whichever hosting
option you choose, make sure it provides the latest stable PHP version and extensions
required by your PHP application.

4 | Chapter 1: Hosting

CHAPTER 2

Provisioning

After you choose a host for your application, it’s time to configure and provision the
server for your PHP application. I’ll be honest—provisioning a server is an art, not a
science. How you provision your server depends entirely on your application’s needs.

If you use a PaaS, your server infrastructure is managed by the
PaaS provider. All you have to do is follow the provider’s instruc‐
tions to move your PHP application onto their platform, and you’re
ready to go.

If you don’t use a PaaS, you must provision either a VPS or dedicated server to run
your PHP application. Provisioning a server is not as hard as it sounds (stop laugh‐
ing), but it does require familiarity with the command line. If the command line is
alien to you, you’re better off with a PaaS like Engine Yard or Heroku.

I don’t consider myself a system administrator. However, basic system adminstration
is an incredibly valuable skill for application developers that enables more flexible
and robust application development. In this chapter, I’ll share my system administra‐
tion knowledge so you can feel comfortable opening a terminal to provision a server
for your PHP application. Afterward, I’ll suggest a few additional resources for you to
continue improving your system administration skills.

In this chapter, I assume you know how to edit a text file using a
command-line editor like nano or vim (these are available on most
Linux distributions). Otherwise, you’ll need an alternative method
of accessing and editing files on your server.

5

http://www.nano-editor.org
http://www.vim.org

Our Goal
First, we need to acquire a virtual private or dedicated server. Next, we need to install
a web server to receive HTTP requests. Finally, we need to set up and manage a group
of PHP processes to handle PHP requests; these processes must communicate with
our web server.

Several years ago, it was common practice to install the Apache web server and the
Apache mod_php module. The Apache web server spawns a unique child process to
handle each HTTP request. The Apache mod_php module embeds a unique PHP
interpreter inside each spawned child process—even processes that serve only static
assets like JavaScript, images, or stylesheets. This is a lot of overhead that wastes sys‐
tem resources. I see fewer and fewer PHP developers use Apache nowadays because
there are more efficient solutions.

Today, I prefer the nginx web server. Nginx sits in front of (and forwards PHP
requests to) a collection of PHP-FPM processes. This is the solution I demonstrate in
this chapter.

Server Setup
First, let’s set up a virtual private server (VPS). I absolutely adore Linode. It isn’t the
cheapest VPS provider, but it’s one of the most reliable. Head over to Linode’s website
(or your preferred vendor) and purchase a new VPS. Your vendor will ask you to
choose a Linux distribution and a root password for your new server.

Many VPS providers, like Linode and Digital Ocean, bill by the
hour. This means you can fire up and play with a VPS at virtually
zero cost.

First Login
The first thing you should do is log in to your new server. Do that now. Open a termi‐
nal on your local machine and ssh into your server. Be sure you swap in your own
machine’s IP address:

ssh root@123.456.78.90

You may be asked to confirm the authenticity of your new server. Type yes and press
Enter:

The authenticity of host '123.456.78.90 (123.456.78.90)' can't be established.
RSA key fingerprint is 21:eb:37:f3:a5:d3:c0:77:47:c4:15:3d:3c:dc:3c:d1.
Are you sure you want to continue connecting (yes/no)?

6 | Chapter 2: Provisioning

http://nginx.org/
https://linode.com/
https://linode.com/
https://www.digitalocean.com

Next, you’ll be prompted for the root user’s password. Type the password and press
Enter:

root@123.456.78.90's password:

You are now logged into your new server!

Software Updates
The very next thing you should do is update your operating system’s software with
these commands.

Ubuntu
apt-get update;
apt-get upgrade;

CentOS
yum update

These commands spit out a lot of information as software updates for your operating
system are downloaded and applied. This is an important first step because it ensures
you have the latest updates and security fixes for your operating system’s default soft‐
ware.

Nonroot User
Your new server is not secure. Here are a few good practices to harden your new serv‐
er’s security.

Create a nonroot user. You should log in to your server as this nonroot user in the
future. The root user has unlimited power on your server. It is God. It can run any
command without question. You should make it as difficult as possible to access your
server as the root user.

Ubuntu

Create a new nonroot user named deploy with the command in Example 2-1. Enter a
user password when prompted, and follow the remaining on-screen instructions.

Example 2-1. Create nonroot user on Ubuntu

adduser deploy

Next, assign the deploy user to the sudo group with this command:

usermod -a -G sudo deploy

This gives the deploy user sudo privileges (i.e., it can perform privileged tasks with
password authentication).

Server Setup | 7

CentOS

Create a new nonroot user named deploy with this command:

adduser deploy

Give the deploy user a password with this command. Enter and confirm the new
password when prompted:

passwd deploy

Next, assign the deploy user to the wheel group with this command:

usermod -a -G wheel deploy

This gives the deploy user sudo privileges (i.e., it can perform privileged tasks with
password authentication).

SSH Key-Pair Authentication
On your local machine, you can log into your new server as the nonroot deploy user
like this:

ssh deploy@123.456.78.90

You’ll be prompted for the deploy user’s password, and then you’ll be logged in to the
server. We can make the login process more secure by disabling password authentica‐
tion. Password authentication is vulnerable to brute-force attacks in which bad guys
try to guess your password over and over in quick succession. Instead, we’ll use SSH
key-pair authentication when we ssh into our server.

Key-pair authentication is a complex subject. In basic terms, you create a pair of
“keys” on your local machine. One key is private (this stays on your local machine),
and one key is public (this goes on the remote server). They are called a key pair
because messages encrypted with the public key can be decrypted only by the related
private key.

When you log in to the remote machine using SSH key-pair authentication, the
remote machine creates a random message, encrypts it with your public key, and
sends it to your local machine. Your local machine decrypts the message with your
private key and returns the decrypted message to the remote server. The remote
server then validates the decrypted message and grants you access to the server. This
is a dramatic simplification, but you get the point.

If you log in to your remote server from many different computers, you probably do
not want to use SSH key-pair authentication. This would require you to generate
public/private SSH key pairs for each local computer and copy each key pair’s public
key to your remote server. In this case, it’s probably preferable to continue using pass‐
word authentication with a secure password. However, if you are only accessing your
remote server from a single local computer (as many developers often do), SSH key-

8 | Chapter 2: Provisioning

pair authentication is the way to go. You can create an SSH key-pair on your local
machine with this command:

ssh-keygen

Follow the subsequent on-screen instructions and enter the requested information
when prompted. This command creates two files on your local machine: ~/.ssh/
id_rsa.pub (your public key) and ~/.ssh/id_rsa (your private key). The private key
should stay on your local computer and remain a secret. Your public key, however,
must be copied onto your new server. We can copy the public key with the scp
(secure copy) command:

scp ~/.ssh/id_rsa.pub deploy@123.456.78.90:

Be sure you include the trailing : character! This command uploads your public key
to the deploy user’s home directory on your remote server. Next, log in to your
remote server as the deploy user. After you log in to your remote server, make sure
the ~/.ssh directory exists. If it does not exist, create the ~/.ssh directory with this
command:

mkdir ~/.ssh

Next, create the ~/.ssh/authorized_keys file with this command:

touch ~/.ssh/authorized_keys

This file will contain a list of public keys that are allowed to log into this remote
server. Execute this command to append your recently uploaded public key to the
~/.ssh/authorized_keys file:

cat ~/id_rsa.pub >> ~/.ssh/authorized_keys

Finally, we need to modify a few directory and file permissions so that only the
deploy user can access its own ~/.ssh directory and read its own ~/.ssh/author‐
ized_keys file. Assign these permissions with these commands:

chown -R deploy:deploy ~/.ssh;
chmod 700 ~/.ssh;
chmod 600 ~/.ssh/authorized_keys;

We’re done! On your local machine, you should now be able to ssh into the remote
server without entering a password.

You can only ssh into your remote server without a password from
the local machine that has your private key!

Server Setup | 9

Disable Passwords and Root Login
Let’s make the remote server even more secure. We’ll disable password authentication
for all users, and we’ll prevent the root user from logging in—period. Remember, the
root user can do anything, so we want to make it as difficult as possible to access our
server as the root user.

Log in to the remote server as the deploy user and open the /etc/ssh/sshd_config file
in your preferred text editor. The is the SSH server’s configuration file. Find the Pass
wordAuthentication setting and change its value to no; uncomment this setting if
necessary. Find the PermitRootLogin setting and change its value to no; uncomment
this setting if necessary. Save your changes and restart the SSH server with this com‐
mand to apply your changes:

Ubuntu
sudo service ssh restart

CentOS
sudo systemctl restart sshd.service

You’re done. You’ve secured your server, and it’s time to install additional software to
run your PHP application. From this point forward, all instructions should be com‐
pleted on the remote server as the nonroot deploy user.

Server security is an ongoing task that should be constantly moni‐
tored. I recommend you implement a firewall in addition to my
previous instructions. Ubuntu users can use UFW. CentOS users
can use iptables.

PHP-FPM
PHP-FPM (PHP FastCGI Process Manager) is software that manages a pool of
related PHP processes that receive and handle requests from a web server like Nginx.
The PHP-FPM software creates one master process (usually run by the operating sys‐
tem’s root user) that controls how and when HTTP requests are forwarded to one or
more child processes. The PHP-FPM master process also controls when child PHP
processes are created (to answer additional web application traffic) and destroyed (if
they are too old or no longer necessary). Each PHP-FPM pool process lives longer
than a single HTTP request, and it can handle 10, 50, 100, 500, or more HTTP
requests.

Install
The simplest way to install PHP-FPM is with your operating sytem’s native package
manager, as demonstrated by the following commands.

10 | Chapter 2: Provisioning

https://help.ubuntu.com/community/UFW
http://wiki.centos.org/HowTos/Network/IPTables
https://php.net/manual/install.fpm.php

See ??? for a detailed PHP-FPM installation guide.

Ubuntu
sudo apt-get install software-properties-common python-software-properties;
sudo add-apt-repository ppa:ondrej/php;
sudo apt-get update;
sudo apt-get install php7.0-fpm php7.0-cli php7.0-curl \
 php7.0-gd php7.0-json php7.0-mcrypt \
 php7.0-mysql php7.0-opcache php7.0-intl;

CentOS
sudo yum install https://dl.fedoraproject.org/pub/epel/ \
 epel-release-latest-7.noarch.rpm;
sudo yum install http://rpms.remirepo.net/enterprise/remi-release-7.rpm;
sudo yum install yum-utils;
sudo yum-config-manager --enable remi-php70;
sudo yum update;
sudo yum install php70-php-fpm php70-php-cli php70-php-gd \
 php70-php-json php70-php-mbstring php70-php-mcrypt \
 php70-php-mysqlnd php70-php-opcache php70-php-pdo \
 php70-php-intl;
sudo ln -s /usr/bin/php70 /usr/bin/php;

Global Configuration
On Ubuntu, the primary PHP-FPM cofiguration file is /etc/php/7.0/fpm/php-fpm.conf.
On CentOS, the primary PHP-FPM configuration file is /etc/opt/remi/php70/php-
fpm.conf. Open this file in your preferred text editor.

PHP-FPM configuration files use the INI file format. Learn more
about the INI format on Wikipedia.

These are the most important global PHP-FPM settings that I recommend you
change from their default values. These two settings might be commented out by
default; uncomment them if necessary. These settings prompt the master PHP-FPM
process to restart if a specific number of its child processes fail within a specific inter‐
val of time. These settings are a basic safety net for your PHP-FPM processes that can
resolve simple issues. They are not a solution to more fundamental problems caused
by bad PHP code.

PHP-FPM | 11

https://en.wikipedia.org/wiki/INI_file

emergency_restart_threshold = 10

The maximum number of PHP-FPM child processes that can fail within a given
time interval until the master PHP-FPM process gracefully restarts

emergency_restart_interval = 1m

The length of time that governs the emergency_restart_threshold setting

Read more about PHP-FPM global configuration at https://php.net/
manual/install.fpm.configuration.php.

Pool Configuration
Elsewhere in the PHP-FPM configuration file is a section named Pool Definitions.
This section contains configuration settings for each PHP-FPM pool. A PHP-FPM
pool is a collection of related PHP child processes. One PHP application typically has
its own PHP-FPM pool.

On Ubuntu, the Pool Definitions section contains this one line:

include=/etc/php/7.0/fpm/pool.d/*.conf

CentOS includes the pool definition files at the top of the primary PHP-FPM config‐
uration file with this line:

include=/etc/opt/remi/php70/php-fpm.d/*.conf

This line prompts PHP-FPM to load individual pool definition files located in the
pool.d/ (Ubuntu) or php-fpm.d/ (CentOS) directory. Navigate into this directory,
and you should see one file named www.conf. This is the configuration file for the
default PHP-FPM pool named www. Open this file in your preferred text editor.

Each PHP-FPM pool configuration begins with a [character, the
pool name, and a] character. The default PHP-FPM pool configu‐
ration, for example, begins with [www].

Each PHP-FPM pool runs as the operating system user and group that you specify. I
prefer to run each PHP-FPM pool as a unique nonroot user to help me identify each
PHP application’s PHP-FPM processes on the command line with the top or ps aux
commands. This is a good habit, too, because each PHP-FPM pool’s processes are
inherently sandboxed by the permissions available to their operating system user and
group.

12 | Chapter 2: Provisioning

https://php.net/manual/install.fpm.configuration.php
https://php.net/manual/install.fpm.configuration.php

We’ll configure the default www PHP-FPM pool to run as the deploy user and group.
If you haven’t already, open the www PHP-FPM pool configuration file in your prefer‐
red text editor. Here are the settings I recommend you change from their default
values:

user = deploy

The system user that owns this PHP-FPM pool’s child processes. Set this to your
PHP application’s nonroot operating system user name.

group = deploy

The system group that owns this PHP-FPM pool’s child processes. Set this to
your PHP application’s nonroot operating system group name.

listen = 127.0.0.1:9000

The IP address and port number on which this PHP-FPM pool listens for and
accepts inbound requests from nginx. The value 127.0.0.1:9000 instructs this
specific PHP-FPM pool to listen for incoming connections on local port 9000. I
use port 9000, but you can use any nonprivileged port number (any port number
greater than 1024) that is not already in use by another system process. We’ll
revisit this setting when we configure our nginx virtual host.

listen.allowed_clients = 127.0.0.1

The IP address(es) that can send requests to this PHP-FPM pool. For security
reasons, I set this to 127.0.0.1. This means that only the current machine can
forward requests to this PHP-FPM pool. This setting might be commented out
by default. Uncomment this setting if necessary.

pm.max_children = 51

This value sets the total number of PHP-FPM pool processes that can exist at any
given time. There is no correct value for this setting. You should test your PHP
application, determine how much memory each individual PHP process uses,
and set this to the total number of PHP processes that your machine’s available
memory can accommodate. Most small to medium-sized PHP applications often
use between 5 MB and 15 MB of memory for each individual PHP process (your
mileage may vary). Assuming we are on a machine with 512 MB of memory
available to this PHP-FPM pool, we can set this value to 512MB total / 10MB
per process, or 51 processes.

pm.start_servers = 3

The number of PHP-FPM pool processes that are available immediately when
PHP-FPM starts. Again, there is no correct value for this setting. For most small
or medium-sized PHP applications, I recommend a value of 2 or 3. This ensures
that your PHP application’s initial HTTP requests don’t have to wait for PHP-

PHP-FPM | 13

FPM to initialize PHP-FPM pool processes. Two or three processes are already
ready and waiting.

pm.min_spare_servers = 2

The smallest number of PHP-FPM pool processes that exist when your PHP
application is idle. This will typically be in the same ballpark as your
pm.start_servers setting, and it ensures that new HTTP requests don’t have to
wait for PHP-FPM to initialize new pool processes to handle new requests.

pm.max_spare_servers = 4

The largest number of PHP-FPM pool processes that exist when your PHP appli‐
cation is idle. This will typically be a bit more than your pm.start_servers set‐
ting, and it ensures that new HTTP requests don’t have to wait for PHP-FPM to
initialize new pool processes to handle new requests.

pm.max_requests = 1000

The maximum number of HTTP requests that each PHP-FPM pool process han‐
dles before being recycled. This setting helps us avoid accumulating memory
leaks caused by poorly coded PHP extensions or libraries. I recommend a value
of 1000, but you should tweak this based on your own application’s needs.

slowlog = /path/to/slowlog.log

The absolute filesystem path to a log file that records information about HTTP
requests that take longer than {n} number of seconds to process. This is helpful
for identifying and debugging bottlenecks in your PHP applications. Bear in
mind, this PHP-FPM pool’s user or group must have permission to write to this
file. The value /path/to/slowlog.log is an example; replace this value with your
own file path.

request_slowlog_timeout = 5s

The length of time after which the current HTTP request’s backtrace is dumped
to the log file specified by the slowlog setting. The value you choose depends on
what you consider to be a slow request. A value of 5s is a reasonable value to start
with.

After you edit and save the PHP-FPM configuration file, restart the PHP-FPM master
process with this command:

Ubuntu
sudo service php7.0-fpm restart

CentOS
sudo systemctl restart php70-php-fpm.service

14 | Chapter 2: Provisioning

Read more about PHP-FPM pool configuration at https://php.net/
manual/install.fpm.configuration.php.

Nginx
Nginx (pronounced in gen ex) is a web server similar to Apache, but it’s much simpler
to configure and often uses less system memory. I don’t have time to dig into Nginx
in detail, but I do want to show you how to install Nginx on your server and forward
appropriate HTTP requests to your PHP-FPM pool.

Install
The simplest way to install Nginx is with your operating system’s native package
manager.

Ubuntu
On Ubuntu, install Nginx with a PPA. This is an Ubuntu-specific term for a prepack‐
aged archive maintained by the Nginx community:

sudo add-apt-repository ppa:nginx/stable;
sudo apt-get update;
sudo apt-get install nginx;

CentOS
On CentOS, install Nginx using the same EPEL third-party software repository we
added earlier. The default CentOS software repositories might not have the latest
nginx version:

sudo yum install nginx;
sudo systemctl enable nginx.service;
sudo systemctl start nginx.service;

Virtual Host
Next, we’ll configure an Nginx virtual host for our PHP application. A virtual host is a
group of settings that tell Nginx our application’s domain name, where the PHP appli‐
cation lives on the filesystem, and how to forward HTTP requests to the PHP-FPM
pool.

First, we must decide where our application lives on the filesystem. The PHP applica‐
tion files must live in a filesystem directory that is readable and writable by the non‐
root deploy user. For this example, I’ll place application files in the /home/deploy/
apps/example.com/current directory. We’ll also need a directory to store application

Nginx | 15

https://php.net/manual/install.fpm.configuration.php
https://php.net/manual/install.fpm.configuration.php

log files. I’ll place log files in the /home/deploy/apps/logs directory. Use these com‐
mands to create the directories and assign correct permissions:

mkdir -p /home/deploy/apps/example.com/current/public;
mkdir -p /home/deploy/apps/logs;
chmod -R +rx /home/deploy;

Place your PHP application in the /home/deploy/apps/example.com/current directory.
The Nginx virtual host configuration assumes your PHP application has a public/
directory; this is the virtual host document root.

Each Nginx virtual host has its own configuration file. If you use Ubuntu, create
the /etc/nginx/sites-available/example.conf configuration file. If you use CentOS, cre‐
ate the /etc/nginx/conf.d/example.conf configuration file. Open the example.conf con‐
figuration file in your preferred text editor.

Nginx virtual host settings live inside a server {} block. Here is the complete virtual
host configuration file:

server {
 listen 80;
 server_name example.com;
 index index.php;
 client_max_body_size 50M;
 error_log /home/deploy/apps/logs/example.error.log;
 access_log /home/deploy/apps/logs/example.access.log;
 root /home/deploy/apps/example.com/current/public;

 location / {
 try_files $uri $uri/ /index.php$is_args$args;
 }

 location ~ \.php {
 try_files $uri =404;
 fastcgi_split_path_info ^(.+\.php)(/.+)$;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param SCRIPT_NAME $fastcgi_script_name;
 fastcgi_index index.php;
 fastcgi_pass 127.0.0.1:9000;
 }
}

Copy and paste this code into the example.conf virtual host configuration file. Make
sure you update the server_name setting and swap the error_log, access_log, and
root paths with appropriate values. Here’s a quick explanation of each virtual host
setting:

listen

The port number on which Nginx listens for inbound HTTP requests. In most
cases, this is port 80 for HTTP traffic or port 443 for HTTPS traffic.

16 | Chapter 2: Provisioning

server_name

The domain name that identifies this virtual host. Change this to your applica‐
tion’s domain name, and ensure the domain name points at your server’s IP
address. Nginx sends an HTTP request to this virtual host if the request’s Host:
header matches the virtual host’s server_name value.

index

The default files served if none is specified in the HTTP request URI.

client_max_body_size

The maximum HTTP request body size accepted by Nginx for this virtual host. If
the request body size exceeds this value, Nginx returns a HTTP 4xx response.

error_log

The filesystem path to this virtual host’s error log file.

access_log

The filesystem path to this virtual host’s access log file.

root

The document root directory.

There are also two location blocks. These tell Nginx how to handle HTTP requests
that match specific URL patterns. The first location / {} block uses a try_files
directive that looks for real files that match the request URI. If a file is not found, it
looks for a directory that matches the request URI. If a directory is not found, it
rewrites the HTTP request URI to /index.php and appends the query string if avail‐
able. The rewritten URL, or any request whose URI ends with .php, is managed by the
location ~ \.php {} block.

The location ~ \.php {} block forwards HTTP requests to our PHP-FPM pool.
Remember how we set up our PHP-FPM pool to listen for requests on port 9000?
This block forwards PHP requests to port 9000, and the PHP-FPM pool takes over.

There are a few extra lines in the location ~ \.php {} block.
These lines prevent potential remote code execution attacks.

On Ubuntu, we must symlink the virtual host configuration file into the /etc/nginx/
sites-enabled/ directory with this command:

sudo ln -s /etc/nginx/sites-available/example.conf \
 /etc/nginx/sites-enabled/example.conf;

Finally, restart Nginx with this command:

Nginx | 17

http://bit.ly/remote-ex

Ubuntu
sudo service nginx restart

CentOS
sudo systemctl restart nginx.service

Your PHP application is up and running! There are many ways to configure Nginx.
I’ve included only the most essential Nginx settings in this chapter because this is a
PHP book, not an Nginx book. You can learn more about Nginx configuration at any
of these helpful resources:

• http://nginx.org/
• https://github.com/h5bp/server-configs-nginx
• https://serversforhackers.com/editions/2014/03/25/nginx/

Automate Server Provisioning
Server provisioning is a lengthy process. It’s also not a fun process, especially if you
manually provision many servers. Fortunately, there are tools available that help auto‐
mate server provisioning. Some popular server provisioning tools are:

• Ansible
• Puppet
• Chef
• SaltStack

Each tool is different, but they all accomplish the same goal—they automatically pro‐
vision new servers based on your exact specifications. If you are responsible for mul‐
tiple servers, I strongly encourage you to explore provisioning tools, because they
save a ton of time.

Delegate Server Provisioning
There are online services, too, that perform server provisioning on your behalf. An
example service is Forge by Taylor Otwell. I was a Forge beta tester, and it really is a
helpful service. Forge can provision multiple servers on Linode, Digital Ocean, and
other popular VPS providers.

Each server provisioned by Forge is automatically secured using the same security
practices I demonstrated earlier. Forge automatically installs an Nginx and PHP-FPM
software stack. Forge also simplifies PHP application deployment, SSL certificate
installation, CRON task creation, and other mundane or confusing system adminis‐

18 | Chapter 2: Provisioning

http://nginx.org/
https://github.com/h5bp/server-configs-nginx
https://serversforhackers.com/editions/2014/03/25/nginx/
http://www.ansible.com/
https://puppetlabs.com/
https://www.chef.io/
https://saltstack.com/
https://forge.laravel.com/

tration tasks. I highly recommend Forge if system administration isn’t your cup of
tea.

Further Reading
I find system administration fascinating. I don’t want to do it as a full-time job, but I
enjoy tinkering on the command line. The best system administration learning
resource for developers, in my opinion, is Servers for Hackers by Chris Fidao.

What’s Next
In this chapter we discussed how to provision a server to run PHP applications. Next
we’ll talk about how to tune your server to eke out maximum performance for your
PHP application.

Further Reading | 19

https://book.serversforhackers.com/

CHAPTER 3

Tuning

By this point, your PHP application should be running alongside Nginx with its own
PHP-FPM process pool. We’re not done yet, though. We should tune PHP’s configu‐
ration with settings appropriate for your application and production server. Default
PHP installations are like an average dress or suit you find at your local department
store; they fit, but they don’t fit well. A tuned PHP installation is a custom tailored
dress or suit prepared with your exact measurements.

Don’t get too excited. PHP tuning is not a universal cure for application performance.
Bad code is still bad code. For example, PHP tuning cannot solve poorly written SQL
queries or unresponsive API calls. However, PHP tuning is a low-hanging fruit that
can improve PHP efficiency and application performance.

The php.ini File
The PHP interpreter is configured and tuned with a file named php.ini. This file can
live in one of several directories on your operating system. If you run PHP with PHP-
FPM, as I demonstrated earlier, you can find the php.ini configuration file
at /etc/php/7.0/fpm/php.ini. Oddly enough, this php.ini file does not control the PHP
interpreter used when you invoke php on the command line. PHP on the command
line uses its own php.ini file often located at /etc/php/7.0/cli/php.ini. If you built PHP
from source, the php.ini location is likely beneath the $PREFIX directory specified
when you configured the PHP source files. I’ll assume you’re running PHP with PHP-
FPM as described, but all of these optimizations are applicable to any php.ini file.

21

Scan your php.ini file for best security practices with the PHP Inis‐
can tool, written by Chris Cornutt.
The php.ini file uses the INI format. You can learn about the INI
format on Wikipedia.

Memory
My first concern when running PHP is how much memory each PHP process con‐
sumes. The memory_limit setting in the php.ini file determines the maximum amount
of system memory that can be used by a single PHP process.

The default value is 128M, and this is probably fine for most small to medium-sized
PHP applications. However, if you are running a tiny PHP application, you can save
system resouces by lowering this value to something like 64M. If you are running a
memory-intensive PHP application (e.g., a Drupal website), you may see improved
performance with a higher value like 256M. The value you choose is dictated by the
amount of available system memory. Figuring out how much memory to allocate to
PHP is more an art than a science. These are the questions I ask myself to determine
my PHP memory limit and the number of PHP-FPM processes I can afford:

What is the total amount of memory I can allocate for PHP?
First, I determine how much system memory I can allocate for PHP. For example,
I may be working with a Linode virtual machine with 2 GB of total memory.
However, other processes (e.g., Nginx, MySQL, or memcache) might run on the
same machine and consume memory of their own. I think I can safely set aside
512 MB of memory for PHP.

How much memory, on average, is consumed by a single PHP process?
Next, I determine how much memory, on average, is consumed by a single PHP
process. This requires me to monitor process memory usage. If you live in the
command line, then you can run top to see realtime stats for running processes.
You can also invoke the memory_get_peak_usage() PHP function at the tail end
of a PHP script to output the maximum amount of memory consumed by the
current script. Either way, run the same PHP script several times (to warm
caches) and take the average memory consumption. I often find PHP processes
consume between 5–20 MB of memory (your mileage may vary). If you are
working with file uploads, image data, or a memory-intensive application, this
value will obviously be higher.

How many PHP-FPM processes can I afford?
I have 512 MB of total memory allocated for PHP. I determine that each PHP
process, on average, consumes about 15 MB of memory. I divide the total mem‐
ory by the amount of memory consumed by each PHP process, and I determine I

22 | Chapter 3: Tuning

https://github.com/psecio/iniscan
https://github.com/psecio/iniscan
https://en.wikipedia.org/wiki/INI_file

can afford 34 PHP-FPM processes. This value is an estimate and should be
refined with experimentation.

Do I have enough system resources?
Finally, I ask myself if I believe I have sufficient system resources to run my PHP
application and handle the expected web traffic. If yes, awesome. If no, I need to
upgrade my server with more memory and return to the first question.

Use Apache Bench or Siege to stress-test your PHP applications
under production-like conditions. If your PHP application does
not have sufficient resources, it’s wise to figure this out before you
take your application into production.

Zend OPcache
After I figure out my memory allocation, I configure the PHP Zend OPcache exten‐
sion. This is an opcode cache. What’s an opcode cache? Let’s first examine how a typi‐
cal PHP script is processed for every HTTP request. First, Nginx forwards an HTTP
request to PHP-FPM, and PHP-FPM assigns the request to a child PHP process. The
PHP process finds the appropriate PHP scripts, it reads the PHP scripts, it compiles
the PHP scripts into an opcode (or bytecode) format, and it executes the compiled
PHP opcode to generate an HTTP response. The HTTP response is returned to
Nginx, and Nginx returns the HTTP response to the HTTP client. This is a lot of
overhead for every HTTP request.

We can speed this up by caching the compiled opcode for each PHP script. Then we
can read and execute precompiled opcode from cache instead of finding, reading, and
compiling PHP scripts for each HTTP request. The Zend OPcache extension is built
into PHP 5.5.0+. Here are my php.ini settings to configure and optimize the Zend
OPcache extension:

opcache.memory_consumption = 64
opcache.interned_strings_buffer = 16
opcache.max_accelerated_files = 4000
opcache.validate_timestamps = 1
opcache.revalidate_freq = 0
opcache.fast_shutdown = 1

opcache.memory_consumption = 64

The amount of memory (in megabytes) allocated for the opcode cache. This
should be large enough to store the compiled opcode for all of your application’s
PHP scripts. If you have a small PHP application with few scripts, this can be a
lower value like 16 MB. If your PHP application is large with many scripts, use a
larger value like 64 MB.

Zend OPcache | 23

http://bit.ly/apache-bench
http://www.joedog.org/siege-home/

opcache.interned_strings_buffer = 16

The amount of memory (in megabytes) used to store interned strings. What the
heck is an interned string? That was my first question, too. The PHP interpreter,
behind the scenes, detects multiple instances of identical strings and stores the
string in memory once and uses pointers whenever the string is used again. This
saves memory. By default, PHP’s string interning is isolated in each PHP process.
This setting lets all PHP-FPM pool processes store their interned strings in a
shared buffer so that interned strings can be referenced across multiple PHP-
FPM pool processes. This saves even more memory. The default value is 4 MB,
but I prefer to bump this to 16 MB.

opcache.max_accelerated_files = 4000

The maximum number of PHP scripts that can be stored in the opcode cache.
You can use any number between 200 and 100000. I use 4000. Make sure this
number is larger than the number of files in your PHP application.

opcache.validate_timestamps = 1

When this setting is enabled, PHP checks PHP scripts for changes on the interval
of time specified by the opcache.revalidate_freq setting. If this setting is dis‐
abled, PHP does not check PHP scripts for changes, and you must clear the
opcode cache manually. I recommend you enable this setting during develop‐
ment and disable this setting during production.

opcache.revalidate_freq = 0

How often (in seconds) PHP checks compiled PHP files for changes. The benefit
of a cache is to avoid recompiling PHP scripts on each request. This setting
determines how long the opcode cache is considered fresh. After this time inter‐
val, PHP checks PHP scripts for changes. If PHP detects a change, PHP recom‐
piles and recaches the script. I use a value of 0 seconds. This value requires PHP
to revalidate PHP files on every request if and only if you enable the opcache.val
idate_timestamps setting. This means PHP revalidates files on every request
during development (a good thing). This setting is moot during production
because the opcache.validate_timestamps setting is disabled anyway.

opcache.fast_shutdown = 1

This prompts the opcache to use a faster shutdown sequence by delegating object
deconstruction and memory release to the Zend Engine memory manager. Doc‐
umentation is lacking for this setting. All you need to know is turn this on.

File Uploads
Does your PHP application accept file uploads? If not, turn off file uploads to
improve application security. If your application does accept file uploads, it’s best to
set a maximum upload filesize that your application accepts. It’s also best to set a

24 | Chapter 3: Tuning

maximum number of uploads that your application accepts at one time. These are the
php.ini settings I use for my own applications:

file_uploads = 1
upload_max_filesize = 10M
max_file_uploads = 3

By default, PHP allows up to 20 uploads in a single request. Each uploaded file can be
up to 2 MB in size. You probably don’t need to allow 20 uploads at once; I only allow
three uploads in a single request, but change this setting to a value that makes sense
for your application.

If my PHP applications accept file uploads, they often need to accept files much larger
than 2 MB. I bump the upload_max_filesize setting to 10M or higher based on each
application’s requirements. Don’t set this to something too large, otherwise your web
server may complain about the HTTP request having too large a body or timing out.

If you accept very large file uploads, be sure your web server is con‐
figured accordingly. You may need to adjust the cli

ent_max_body_size setting in your Nginx virtual host
configuration in addition to your php.ini file.

Max Execution Time
The max_execution_time setting in your php.ini file determines the maximum length
of time that a single PHP process can run before terminating. By default, this is set to
30 seconds. You don’t want PHP processes running for 30 seconds. We want our
applications to be super-fast (measured in milliseconds). I recommend you change
this to 5 seconds:

max_execution_time = 5

You can override this setting on a per-script basis with the
set_time_limit() PHP function.

What if my PHP script needs to run a long time? you ask. It shouldn’t. The longer PHP
runs, the longer your web application visitors must wait for a response. If you have
long-running tasks (e.g., resizing images or generating reports), offload those tasks to
a separate worker process.

Max Execution Time | 25

http://bit.ly/max-body-size
http://bit.ly/max-body-size
https://php.net/manual/function.set-time-limit.php

I use the exec() PHP function to invoke the at bash command.
This lets me fork separate nonblocking processes that do not delay
the current PHP process. If you use the exec() PHP function, it is
your responsibility to escape shell arguments with the escapeshel
larg PHP function.

Assume we need to run a report and generate a PDF file with the results. This task
may take 10 minutes to complete. Surely we don’t want the PHP request to sit around
for 10 minutes. Instead, we create a separate PHP file called create-report.php that will
chug along for 10 minutes and eventually generate our report. However, our web
application will take only milliseconds to spin off a separate background process and
return an HTTP response, like this:

<?php
exec('echo "create-report.php" | at now');
echo 'Report pending...';

The standalone create-report.php script runs in a separate background process; it can
update a database or email the report recipient upon completion. There is absolutely
no reason why the primary PHP script should hold up the user experience for long-
running tasks.

If you find yourself spawning a lot of background processes, you
may be better served with a dedicated job queue. PHP Resque is a
great job queue manager based on the original Resque job queue
manager from GitHub.

Session Handling
PHP’s default session handler can slow down larger applications because it stores ses‐
sion data on disk. This creates unnecessary file I/O that takes time to read and write.
Instead, offload session handling to a faster in-memory data store like Memcached or
Redis. This has the added benefit of future scalability. If your session data is stored on
disk, this prevents you from scaling PHP across additional servers. If your session
data is, instead, stored on a central Memcached or Redis data store, it can be accessed
from any number of distributed PHP-FPM servers.

Install the PECL Memcached extension to access a Memcached datastore from PHP.
You can now change PHP’s default session store to Memcached by adding these lines
to your php.ini file:

session.save_handler = 'memcached'
session.save_path = '127.0.0.2:11211'

26 | Chapter 3: Tuning

https://php.net/manual/function.escapeshellarg.php
https://php.net/manual/function.escapeshellarg.php
https://github.com/chrisboulton/php-resque
https://github.com/blog/542-introducing-resque
http://memcached.org
http://redis.io
http://pecl.php.net/package/memcached

Output Buffering
Networks are more efficient when sending more data in fewer chunks, rather than
less data in more chunks. In other words, deliver content to your visitor’s web
browser in fewer pieces to reduce the total number of HTTP requests.

This is why you enable PHP output buffering. By default, PHP’s output buffer is
enabled (except on the command line). PHP’s output buffer collects up to 4,096 bytes
before flushing its contents back to the web server. Here are my recommended php.ini
settings:

output_buffering = 4096
implicit_flush = false

If you change the output buffer size, make sure its value is a multi‐
ple of 4 (for 32-bit systems) or 8 (for 64-bit systems).

Realpath Cache
PHP maintains a cache of file paths that are used by your PHP application so it does
not have to continually search the include path each time it includes or requires a file.
This cache is called the realpath cache. If you are running a large PHP application that
uses a lot of separate files (Drupal, Composer components, etc.), you can realize bet‐
ter performance by increasing the size of PHP’s realpath cache.

The default realpath cache size is 16k. It’s not obvious how to figure out the exact size
you need, but here’s a trick you can use. First, bump the realpath cache size to some‐
thing obnoxiously large, like 256k. Then output the actual realpath cache size at the
tail end of a PHP script with print_r(realpath_cache_size());. Change your real‐
path cache size to this actual value. You can set the realpath cache size in your php.ini
file:

realpath_cache_size = 64k

Up Next
We’ve got a server firing on all cylinders, and we’re ready to deploy our PHP applica‐
tion into production. In the next chapter we’ll discuss several strategies to automate
PHP application deployment.

Output Buffering | 27

CHAPTER 4

Deployment

We’ve got a provisioned server running Nginx and PHP-FPM. Now we need to
deploy our PHP application to a production server. There are many ways to push
code into production. FTP was a popular way to deploy PHP code back when PHP
developers first started banging rocks together. FTP still works, but today there are
safer and more predictable deployment strategies. This chapter shows you how to use
modern tools to automate deployment in a simple, predictable, and reversible way.

Version Control
I assume you are using version control, right? If you are, good job. If you aren’t, stop
what you are doing and version control your code. I prefer to version control my
code with Git, but other version control software like Mercurial works, too. I use Git
because it’s what I know, and it works seamlessly with popular online repositories like
Bitbucket and GitHub.

Version control is an invaluable tool for PHP application developers because it lets us
track changes to our codebase. We can tag points in time as a release, we can roll back
to a previous state, and we can experiment with new features on separate branches
that do not affect our production code. More important, version control helps us
automate PHP application deployment.

Automate Deployment
It is important that you automate application deployment so that it becomes a simple,
predictable, and reversible process. The last thing you want to worry about is a com‐
plicated deployment process. Complicated deployments are scary, and scary things
are used less often.

29

https://git-scm.com/
https://www.mercurial-scm.org/
https://bitbucket.org
https://github.com

Make It Simple
Instead, make your deployment process a simple one-line command. A simple
deployment process is less scary, and that means you’re more likely to push code to
production.

Make It Predictable
Make your deployment process predictable. A predictable process is even less scary
because you know exactly what it is going to do. It should not have unexpected side
effects. If it runs into an error, it aborts the deployment process and leaves the exist‐
ing codebase in place.

Make It Reversible
Make your deployment process reversible. If you accidentily push bad code into pro‐
duction, it should be a simple one-line command to roll back to the previous stable
codebase. This is your safety net. A reversible deployment process should make you
excited—not afraid—to push code into production. If you screw up, just roll back to
the previous release.

Capistrano
Capistrano is software that automates application deployment in a simple, predicta‐
ble, and reversible way. Capistrano runs on your local machine and talks with remote
servers via SSH. Capistrano was originally written to deploy Ruby applications, but
it’s just as useful for any programming language—including PHP.

How It Works
Capistrano deploys your PHP application to a remote server by issuing SSH com‐
mands from your local workstation to the remote server. Capistrano organizes appli‐
cation deployments in their own directories on the remote server. Capistrano
maintains five or more application deployment directories in case you must roll back
to an earlier release. Capistrano also creates a current/ directory that is a symlink to
the current application deployment’s directory. Your production server’s Capistrano-
managed directory structure might look like Example 4-1.

Example 4-1. Example directory structure

/
 home/
 deploy/
 apps/
 my_app/

30 | Chapter 4: Deployment

http://capistranorb.com/

 current/
 releases/
 release1/
 release2/
 release3/
 release4/
 release5/

When you deploy a new application release to production, Capistrano first retrieves
the latest version of your application code from its Git repository. Next, Capistrano
places the application code in a new release directory. Finally, Capistrano symlinks
the current/ directory to the new release directory. When you ask Capistrano to roll
back to a previous release, Capistrano points the current/ directory symlink to a pre‐
vious release directory. Capistrano is an elegant and simple deployment solution that
makes PHP application deployments simple, predictable, and reversible.

Install
Install Capistrano on your local machine. Do not install Capistrano on your remote
servers. You’ll need ruby and gem, too. OS X users already have these. Linux users can
install ruby and gem with their respective package managers. After you install ruby
and gem, install Capistrano with this command:

gem install capistrano

Configure
After you install Capistrano, you must initialize your project for Capistrano. Open a
terminal, navigate to your project’s topmost directory, and run this command:

cap install

This command creates a file named Capfile, a directory named config/, and a direc‐
tory named lib/. Your project’s topmost directory should now have these files and
directories:

Capfile
config/
 deploy/
 production.rb
 staging.rb
 deploy.rb
lib/
 capistrano/
 tasks/

The Capfile file is Capistrano’s central configuration file, and it aggregates the config‐
uration files located in the config/ directory. The config/ directory contains configura‐
tion files for each remote server environment (e.g., testing, staging, or production).

Capistrano | 31

Capistrano configuration files are written in the Ruby language.
However, they are still easy to edit and understand.

By default, Capistrano assumes you have multiple environments for your application.
For example, you might have separate staging and production environments. Capi‐
strano provides a separate configuration file for each environment in the config/
deploy/ directory. Capistrano also provides the config/deploy.rb configuration file,
which contains settings common to all environments.

In each environment, Capistrano has the notion of server roles. For example, your
production environment may have a front-facing web server (the web role), an appli‐
cation server (the app role), and a database server (the db role). Only the largest appli‐
cations necessitate this architecture. Smaller PHP applications generally use only one
machine that runs the web server (nginx), application server (PHP-FPM), and data‐
base server (MariaDB).

For this demonstration, I’m only going to use Capistrano’s web role and ignore its app
and db roles. Capistrano’s roles let you organize tasks to be executed only on servers
that belong to a given role. This isn’t something we’re going to worry about here.
However, I am going to respect Capistrano’s notion of server environments. This
demonstration will use the production environment, but the following steps are
equally applicable to other environments (e.g., staging or testing).

The config/deploy.rb file
Let’s look at the config/deploy.rb file. This configuration file contains settings com‐
mon to all environments (e.g., staging and production). Most of our Capistrano
configuration settings go in this file. Open the config/deploy.rb file in your preferred
text editor and update these settings:

:application

This is the name of your PHP application. It should contain only letters, num‐
bers, and underscores.

:repo_url

This is your Git repository URL. This URL must point to a Git repository, and
the repository must be accessible from your remote server.

:deploy_to

This is the absolute directory path on your remote server in which your PHP
application is deployed. This would be /home/deploy/apps/my_app as shown in
Example 4-1.

32 | Chapter 4: Deployment

:keep_releases

This is the number of old releases that should be retained in case you want to roll
back your application to an earlier version.

The config/deploy/production.rb file
This file contains settings only for your production environment. This file defines the
production environment roles, and it lists the servers that belong to each role. We’re
only using the web role, and we have only one server that belongs to this role. Let’s use
the server we provisioned in Chapter 2. Update the entire config/deploy/production.rb
file with this content. Make sure you replace the example IP address:

role :web, %w{deploy@123.456.78.90}

Authenticate
Before we deploy our application with Capistrano, we must establish authentication
between our local computer and our remote servers, and between our remote servers
and the Git repository. We already discussed how to set up SSH key-pair authentica‐
tion between our local computer and remote server. You should also establish SSH
key-pair authentication between your remote servers and the Git repository.

Use the same instructions we discussed earlier to generate an SSH public and private
keypair on each remote server. The Git repository should be given each remote serv‐
er’s public key; both GitHub and Bitbucket let you add multiple public SSH keys to
your user account. Ultimately, you must be able to clone the Git repository to your
remote servers without a password.

Prepare the Remote Server
We’re almost ready to deploy our application. First, we need to prepare our remote
server. Log in to your remote server with SSH and create the directory in which we’ll
deploy our PHP application. This directory must be readable and writable by the
deploy user. I like to create a directory for my applications in the deploy user’s home
directory, like this:

/
 home/
 deploy/
 apps/
 my_app/

Virtual host
Capistrano symlinks the current/ directory to the current application release direc‐
tory. Update your web server’s virtual host document root directory so that it points
to Capistrano’s current/ directory. Given this filesystem diagram, your virtual host

Capistrano | 33

document root might become /home/deploy/apps/my_app/current/public/; this
assumes your PHP application contains a public/ directory that serves as the docu‐
ment root. Restart your web server to load your virtual host configuration changes.

Software dependencies
Your remote server doesn’t need Capistrano, but it does need Git. It also needs any
software required to run your PHP application. You can install Git with these com‐
mands:

Ubuntu
sudo apt-get install git;

CentOS
sudo yum install git;

Capistrano Hooks
Capistrano allows us to run our own commands at specific moments (or hooks) dur‐
ing application deployment. Many PHP developers manage application dependencies
with Composer. We can install Composer dependencies during each Capistrano
deployment with a Capistrano hook. Open the config/deploy.rb file in your preferred
text editor and append this Ruby code:

namespace :deploy do
 desc "Build"
 after :updated, :build do
 on roles(:web) do
 within release_path do
 execute :composer, "install --no-dev --quiet --optimize-autoloader"
 end
 end
 end
end

If your project uses the Composer dependency manager, make sure
Composer is installed on your remote servers.

Our application’s dependencies are now installed automatically after each production
deployment. You can read more about Capistrano hooks on the Capistrano website.

Deploy Your Application
Now’s the fun part! Make sure you’ve committed and pushed your most recent appli‐
cation code to your Git repository. Then open a terminal on your local computer and

34 | Chapter 4: Deployment

http://bit.ly/cap-flow

navigate to your application’s topmost directory. If you’ve done everything correctly,
you can deploy your PHP application with this one-line command:

cap production deploy

Roll Back Your Application
On the off chance you deploy bad code to your production environment, you can roll
back to a previous release with this one-line command:

cap production deploy:rollback

Further Reading
I’ve only scratched the surface. Capistrano has many more features that further
streamline your deployment workflow. Capistrano is my favorite deployment tool,
but there are many other tools available, including:

• Deployer
• Magallanes
• Rocketeer

What’s Next
We’ve provisioned a server, and we’ve automated our PHP application deployments
with Capistrano. Next we’ll discuss how to ensure our PHP applications run as
expected. To do this, we’ll use testing and profiling.

Further Reading | 35

http://deployer.org/
http://magephp.com/
http://rocketeer.autopergamene.eu/

CHAPTER 5

Testing

Testing is an important part of PHP application development, but it is often neglec‐
ted. I think many PHP developers don’t test because they consider testing an unnec‐
essary burden that requires too much time for too few benefits. Other developers may
not know how to test, because there are a large number of testing tools and an over‐
whelming learning curve.

In this chapter I hope to dispel these misunderstandings. I want you to feel comforta‐
ble and excited about testing your PHP code. I want you to consider testing an inte‐
gral part of your workflow that happens at the beginning, middle, and end of the
application development process.

Why Do We Test?
We write tests to ensure that our PHP applications work, and continue to work,
according to our expectations. It’s as simple as that. How often have you been afraid
to deploy an application into production? Before I started testing my code, I was ter‐
rified to push a release into production. Would my code work? Would it break? All I
could do was cross my fingers and hope for the best. This is no way to code. It’s scary
and stressful, and it usually ends in frustration. Tests, however, mitigate uncertainty,
and they let us write and deploy code with confidence.

Your pointy-haired boss may argue that there isn’t enough time to write tests. After
all, time is money. This is shortsighted. Installing a testing infrastructure and writing
tests takes time, but this is a wise investment that pays dividends into the future. Tests
help us write code that works well the first time. Tests let us continuously iterate
without breaking old code. We may move forward at a slower pace than if we didn’t
use tests, but we won’t waste countless development hours in the future

37

troubleshooting and refactoring bugs that were overlooked. In the long term, tests
save money, prevent downtime, and inspire confidence.

When Do We Test?
I see many PHP developers write tests as an afterthought. These developers know
testing is important, but they consider tests as something they must do instead of
something they want to do. These developers often push testing to the very end of the
application development process. They bang out a few passing tests to satisfy their
management team and call it a day. This is wrong. Tests should be a foreground con‐
cern before development, during development, and after development.

Before
Install and configure your testing tools before you develop your application. It doesn’t
matter which testing tools you choose. Install them as if they are a vital application
dependency. This makes it physically and mentally easier to test your application dur‐
ing development. This is also a good time to meet with your project manager to
define higher-level application behavior.

During
Write and run tests as you build each piece of your application. Did you just add a
new PHP class? Test it now, because you probably won’t test it later. Testing while you
develop helps you build confident and stable code, and it also helps you quickly find
and refactor new code that breaks existing functionality.

After
You probably won’t anticipate and test all of your application’s behaviors during
development. If you find a bug after you launch your application, write a new test to
ensure that your bug fix works correctly. Tests are not a once-and-done thing. Tests
are continuously modified and improved, just like the application itself. If you update
your application’s code, be sure you also update the affected tests.

What Do We Test?
We test the smallest pieces of our application. A PHP application, on a microcosmic
scale, has PHP classes, methods, and functions. We should test each public class,
method, and function to ensure it behaves as we expect in isolation. If we know each
piece works well on its own, we can be confident it also works well when integrated
into the whole application. These tests are called unit tests.

38 | Chapter 5: Testing

Unfortunately, testing each individual piece does not guarantee it works correctly
with the whole application. This is why we also test our application at a macrocosmic
scale with automated testing tools that verify our application’s higher-level behaviors.
These tests are called functional tests.

How Do We Test?
We know why, when, and what to test. More important, let’s chat about how we test
code. There are several popular ways PHP developers approach testing. Some devel‐
opers prefer unit tests. Some developers prefer test-driven development (TDD). And
other developers prefer behavior-driven development (BDD). These are not mutually
exclusive.

Unit Tests
The most popular approach to PHP application testing is unit testing. As I described
previously, unit tests certify individual classes, methods, and functions in isolation
from the larger application. The de facto standard PHP unit testing framework is
PHPUnit, written by Sebastian Bergmann. Sebastian’s PHPUnit framework adheres to
the xUnit test architecture.

There are alternative PHP unit testing frameworks, like PHPSpec, available for you to
use, too. However, most popular PHP frameworks provide PHPUnit tests. It’s vital
that you know how to read, write, and run PHPUnit tests if you intend to contribute
to or release PHP components. I’ll show you how to install, write, and run PHP unit
tests at the end of this chapter.

Test-Driven Development (TDD)
Test-driven development means you write tests before you write application code.
These tests purposefully fail and describe how your application should behave. As you
build application functionality, your tests will eventually run successfully. TDD helps
you build with a purpose; you know ahead of time what you will build and how it
should work.

This does not mean that you must write all of your application tests before you write
any code. Instead, write a few tests and then build the related functionality. Write
tests and build. Write tests and build. TDD is iterative. Move forward in small sprints
until your application is complete.

Behavior-Driven Development (BDD)
Behavior-driven development means that you write stories that describe how your
application behaves. There are two types of BDD: SpecBDD and StoryBDD.

How Do We Test? | 39

https://phpunit.de/
https://sebastian-bergmann.de/

SpecBDD is a type of unit test that uses a fluid and human-friendly language to
describe your application’s implementation. SpecBDD accomplishes the same goal as
alternative unit testing tools like PHPUnit. Unlike PHPUnit’s xUnit architecture,
SpecBDD tests use human-readable stories to describe behavior. For example, a
PHPUnit test might be named testRenderTemplate(). An equivalent SpecBDD test
might be named itDrawsTheHomePage(). The same SpecBDD test might use helper
methods named $this->shouldReturn(), $this->shouldBe(), and $this-

>shouldThrow(). SpecBDD tests use a language that is much easier to read and
understand than alternative xUnit tools. The most popular SpecBDD testing tool is
PHPSpec.

StoryBDD tools use the same human-friendly stories as SpecBDD tests. StoryBDD
tools, however, are more concerned with higher-level behavior than with lower-level
implementation. For example, a StoryBDD test confirms that your code creates and
emails a PDF report. A SpecBDD test, on the other hand, confirms that a specific
PDF generator class method correctly renders a PDF file for a given set of input
parameters. The difference is scope. StoryBDD resembles something a project man‐
ager would write (e.g., “this should generate and email me a report”). A SpecBDD test
resembles something a developer would write (e.g., “this class method should receive
an array of data and write it to this PDF file”). StoryBDD and SpecBDD testing tools
are not mutually exclusive. They are often used together to build a more comprehen‐
sive set of tests. You’ll often sit with your project manager to write generic StoryBDD
tests that define your application’s generic behavior, and then you’ll write SpecBDD
tests when you design and build your application’s implementation. The most popular
StoryBDD testing tool is Behat.

Write StoryBDD tests that describe your business logic and not a
specific implementation. A good StoryBDD test confirms “a shop‐
ping cart total increases when I add a product to the cart.” A bad
StoryBDD test confirms “a shopping cart total increases when I
send an HTTP PUT request to the /cart URL with the body prod
uct_id=1&quantity=2.” The first test is generic and describes only
the high-level business logic. The second test is too specific and
describes a particular implementation.

PHPUnit
Let’s talk about how to install, write, and run PHPUnit tests. It takes a bit of work to
get the infrastructure in place, but it’s dead simple to write and run your PHPUnit
tests afterward. Before we dig too deep into PHPUnit, let’s quickly review some
vocabulary. Your PHPUnit tests are grouped into test cases, and your test cases are
grouped into test suites. PHPUnit runs your test suites with a test runner.

40 | Chapter 5: Testing

http://www.phpspec.net/
http://behat.org/

A test case is a single PHP class that extends the PHPUnit_Framework_TestCase class.
Each test case contains public methods whose names begin with test; these methods
are individual tests that assert specific scenarios to be true. Each assertion can pass or
fail. You want all assertions to pass.

A test case class name must end with Test, and its filename must
end with Test.php. A hypothetical test case class name is FooTest,
and that class lives in a file named FooTest.php.

A test suite is a collection of related test cases. If you are working on a single PHP
component, oftentimes you’ll only ever have a single test suite. If you are testing a
larger PHP application with many different subsystems or components, you may find
it best to organize tests into multiple test suites.

A test runner is exactly what it sounds like. It is a way for PHPUnit to run your test
suites and output the result. The default PHPUnit test runner is the command-line
runner that is invoked with the phpunit command in your terminal application.

Directory Structure
Here’s how I prefer to organize my PHP projects. The topmost project directory has a
src/ directory where I keep my source code. It also has a tests/ directory where I keep
my tests. Here’s an example directory structure:

src/
tests/
 bootstrap.php
composer.json
phpunit.xml
.travis.yml

src/
This directory contains my PHP project’s source code (i.e., PHP classes).

tests/
This directory contains my PHP project’s PHPUnit tests. This directory contains
a bootstrap.php file that is included by PHPUnit before the unit tests are run.

composer.json
This file lists my PHP project’s dependencies managed by Composer, including
the PHPUnit test framework.

phpunit.xml
This file provides configuration details for the PHPUnit test runner.

PHPUnit | 41

.travis.yml
This file provides configuration details for the Travis CI continuous testing web
service.

Look at your favorite PHP component or framework’s source code
on GitHub and you’ll see it uses a similar organization.

Install PHPUnit
First we need to install PHPUnit and the Xdebug profiler. PHPUnit runs our tests.
The Xdebug profiler generates helpful code coverage information. Composer is the
easiest way to install the PHPUnit test framework. Open your terminal application,
navigate to your project’s topmost directory, and run this command:

composer require --dev phpunit/phpunit

This command downloads the PHPUnit test framework into your project’s vendor/
directory, and it updates your project’s composer.json file so that the phpunit/phpunit
package is listed as a project dependency. The phpunit binary is installed in your
project’s vendor/bin/ directory. You can add this directory to your environment path,
or you can reference vendor/bin/phpunit whenever you invoke the PHPUnit com‐
mand line test runner. The PHPUnit framework classes are autoloaded into your
PHP application with your project’s other Composer-managed dependencies.

Install Xdebug
The Xdebug PHP extension is a bit trickier to install. If you installed PHP with your
package manager, you can install Xdebug the same way (Example 5-1).

Example 5-1. How to install Xdebug

Ubuntu
sudo apt-get install php7.0-xdebug

CentOS
sudo yum install php70-php-pecl-xdebug

If you installed PHP from source, you’ll need to install the Xdebug extension with the
pecl command:

pecl install xdebug

Next, update your php.ini configuration file with the path to the compiled Xdebug
extension.

42 | Chapter 5: Testing

You can find your PHP extensions directory with the php-config
--extension-dir or php -i | grep extension_dir commands.

Append this line to your php.ini file using your own PHP extension path:

zend_extension="/PATH/TO/xdebug.so"

Restart PHP and you’re good to go. We’ll discuss the Xdebug profiler in Chapter 6.

Configure PHPUnit
Now let’s configure PHPUnit in our project’s phpunit.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<phpunit bootstrap="tests/bootstrap.php">
 <testsuites>
 <testsuite name="whovian">
 <directory suffix="Test.php">tests</directory>
 </testsuite>
 </testsuites>

 <filter>
 <whitelist>
 <directory>src</directory>
 </whitelist>
 </filter>
</phpunit>

PHPUnit test runner settings are attributes on the <phpunit> XML root element. The
most important setting, in my opinion, is the bootstrap setting; it specifies the path
(relative to the phpunit.xml file) to a PHP file that is included before the PHPUnit test
runner executes our tests. We’ll autoload our application’s Composer dependencies in
the bootstrap.php file so they are available to our PHPUnit tests. The phpunit.xml file
also specifies the path to our test suite (i.e., a directory that contains related test
cases); PHPUnit runs all PHP files in this directory whose file names end with
Test.php. Finally, this configuration file lists the directories included in our code cov‐
erage analysis with the <filter> element. In the previous example XML, the <white
list> element tells PHPUnit to generate code coverage only for code in the src/
directory.

The gist of this configuration file is to specify our PHPUnit settings in one location.
This makes our lives easier locally because we don’t have to specify these settings each
time we use the phpunit command-line runner. This configuration file also lets us
apply the same PHPUnit settings on remote continuous testing servers like Travis CI.
After you update the phpunit.xml configuration file, update the tests/bootstrap.php file
with this code:

PHPUnit | 43

<?php
// Enable Composer autoloader
require dirname(__DIR__) . '/vendor/autoload.php';

Make sure you install your Composer dependencies before running
PHPUnit tests.

The Whovian Class
Before we write unit tests, we need something to test. Here’s a hypothetical PHP class
named Whovian that has a pretty strong opinion about a particular BBC television
show. Place this class definition into the src/Whovian.php file:

<?php
class Whovian
{
 /**
 * @var string
 */
 protected $favoriteDoctor;

 /**
 * Constructor
 * @param string $favoriteDoctor
 */
 public function __construct($favoriteDoctor)
 {
 $this->favoriteDoctor = (string)$favoriteDoctor;
 }

 /**
 * Say
 * @return string
 */
 public function say()
 {
 return 'The best doctor is ' . $this->favoriteDoctor;
 }

 /**
 * Respond to
 * @param string $input
 * @return string
 * @throws \Exception
 */
 public function respondTo($input)
 {
 $input = strtolower($input);

44 | Chapter 5: Testing

 $myDoctor = strtolower($this->favoriteDoctor);

 if (strpos($input, $myDoctor) === false) {
 throw new Exception(
 sprintf(
 'No way! %s is the best doctor ever!',
 $this->favoriteDoctor
)
);
 }

 return 'I agree!';
 }
}

The Whovian class constructor sets the instance’s favorite doctor. The say() method
returns a string with the instance’s favorite doctor. And its respondTo() method
receives a statement from another Whovian instance and responds accordingly.

The WhovianTest Test Case
The unit tests for our Whovian class live in the test/WhovianTest.php file. We call a
group of related tests a test suite. In our example, all tests beneath the test/ directory
belong to the same test suite. Each class file beneath the test/ directory is called a test
case, and its class methods that begin with test (e.g., testThis or testThat) are indi‐
vidual tests. Each individual test uses assertions to verify a given condition. An asser‐
tion can pass or fail.

Find a list of PHPUnit assertions on the PHPUnit website. Some
assertions are undocumented; you can find all available assertions
in the source code on GitHub.

Each PHPUnit test case is a class that extends the PHPUnit_Framework_TestCase
class. Let’s declare a test case named WhovianTest in the test/WhovianTest.php file:

<?php
require dirname(__DIR__) . '/src/Whovian.php';

class WhovianTest extends PHPUnit_Framework_TestCase
{
 // Individual tests go here
}

Remember, unit tests verify a public interface’s expected behavior. We’ll test the three
public methods in the Whovian class. We’ll write a unit test to ensure that the __con
struct() method argument becomes the instance’s preferred doctor. Next, we’ll write

PHPUnit | 45

http://bit.ly/php-unit
http://bit.ly/phpu-gh

a unit test to ensure that the say() method’s return value mentions the instance’s pre‐
ferred doctor. Finally, we’ll write two tests for the respondTo() method. One test
ensures that the method’s return value is the string "I agree!" if the input matches
its preferred doctor. The second test ensures the method throws an exception if the
input does not match its preferred doctor.

Test 1: __construct()

Our first test confirms that the constructor sets the Whovian instance’s favorite doctor:

public function testSetsDoctorWithConstructor()
{
 $whovian = new Whovian('Peter Capaldi');
 $this->assertAttributeEquals('Peter Capaldi', 'favoriteDoctor', $whovian);
}

This test instantiates a new Whovian instance with one string argument: "Peter Capa
ldi". We use the PHPUnit assertion method assertAttributeEquals() to assert the
favoriteDoctor property on the $whovian instance equals the string
"Peter Capaldi".

The PHPUnit assertion assertAttributeEquals() receives three
arguments. The first argument is the expected value; the second
argument is the property name; and the final argument is the
object to inspect. What’s neat is that the assertAttributeEquals()
method can inspect and verify protected properties using PHP’s
reflection capabilities.

Why do we inspect the favorite doctor value with the assertAttributeEquals()
assertion instead of a getter method (e.g., getFavoriteDoctor())? When we write a
test, we test only one specific method in isolation. Ideally, our test does not rely on
other methods. In this particular example, we test the __construct() method and
verify that it assigns its argument value to the object’s $favoriteDoctor property. The
assertAttributeEquals() assertion lets us inspect the object’s internal state without
relying on a separate, untested getter method.

Test 2: say()

Our next test confirms that the Whovian instance’s say() method returns a string
value that contains its favorite doctor’s name:

public function testSaysDoctorName()
{
 $whovian = new Whovian('David Tennant');
 $this->assertEquals('The best doctor is David Tennant', $whovian->say());
}

46 | Chapter 5: Testing

We use the PHPUnit assertion assertEquals() to compare two values. The asser‐
tion’s first argument is the expected value. Its second argument is the value to inspect.

Test 3: respondTo() in agreement

Now let’s test how a Whovian instance responds in agreement with another Whovian:

public function testRespondToInAgreement()
{
 $whovian = new Whovian('David Tennant');

 $opinion = 'David Tennant is the best doctor, period';
 $this->assertEquals('I agree!', $whovian->respondTo($opinion));
}

This test is successful because the Whovian instance’s respondTo() method receives a
string argument that includes the name of its favorite doctor.

Test 4: respondTo() in disagreement

But what if a Whovian disagrees? Get out of the area as quickly as possible, because s#!t
is going to hit the fan. Well, actually, it’ll just throw an exception. Let’s test that:

/**
 * @expectedException Exception
 */
public function testRespondToInDisagreement()
{
 $whovian = new Whovian('David Tennant');

 $opinion = 'No way. Matt Smith was awesome!';
 $whovian->respondTo($opinion);
}

If this test throws an exception, the test passes. Otherwise, the test fails. We can test
this condition with the @expectedException annotation.

PHPUnit provides several annotations that can control a given test.
Read more about PHPUnit annotations in the PHPUnit documen‐
tation.

Run Tests
After you write each test, you should run your test suite to ensure that it passes. This
is really simple to do. Open your terminal application and navigate to your project’s
topmost directory (the same directory as your phpunit.xml configuration file). We’ll
use the PHPUnit binary installed with Composer. Use this command to start the
PHPUnit test runner:

PHPUnit | 47

http://bit.ly/phpunit-docs
http://bit.ly/phpunit-docs

vendor/bin/phpunit -c phpunit.xml

The -c option specifies the path to the PHPUnit configuration file. The terminal
shows the results from the PHPUnit command-line test runner, and they look like
Figure 5-1.

Figure 5-1. PHPUnit test results

These results tell us:

1. PHPUnit read our configuration file.
2. PHPUnit took 24 ms to complete.
3. PHPUnit used 3.5 MB of memory.
4. PHPUnit successfully ran five tests and five assertions.

Code Coverage
We know our PHPUnit tests pass. However, are we sure we tested as much of our
code as possible? Perhaps we forgot to test something. We can see exactly which code
is tested (and untested) with PHPUnit’s code coverage report (Figure 5-2). We already
specify the path(s) to our source code files in the PHPUnit configuration file. All PHP
files in the whitelisted directories are included in PHPUnit’s code coverage report. We
can generate code coverage each time we run the PHPUnit test runner:

vendor/bin/phpunit -c phpunit.xml --coverage-html coverage

This is the same command we used earlier, except we append the new --coverage-
html option whose value is the path to a the code coverage report directory. After you
run this command, open the newly generated coverage/index.html file in a web
browser to see the code coverage results. Ideally, you want to see 100% coverage
across the board. However, 100% coverage is not realistic and definitely should not be

48 | Chapter 5: Testing

a requirement. How much coverage is good is subjective and varies from project to
project.

Figure 5-2. PHPUnit code coverage report

Use PHPUnit’s code coverage report as a guideline to improve your
code. Don’t use code coverage percentages as requirements.

Continuous Testing with Travis CI
Sometimes even the best PHP developers forget to write tests. This is why it is impor‐
tant to automate your tests. The best tests are like a good backup strategy—out of
sight and out of mind. Tests should run automatically. My favorite continuous testing
service is Travis CI because it has native hooks into GitHub repositories. I can run my
application tests within Travis CI every time I push code to GitHub. Travis CI runs
my tests against multiple PHP versions, too.

Setup
If you have not used Travis CI before, go to https://travis-ci.org (for public reposito‐
ries) or https://travis-ci.com (for private repositories). Log in with your GitHub
account. Follow the on-screen instructions to choose which repository to test with
Travis CI.

Next, create the .travis.yml Travis CI configuration file in your application’s topmost
directory. Don’t forget the leading . character! Save, commit, and push the Travis CI
configuration file to your GitHub repository. Here’s an example Travis CI configura‐
tion:

language: php
php:
 - 5.6
 - 7.0

Continuous Testing with Travis CI | 49

https://travis-ci.org/
https://travis-ci.org
https://travis-ci.com

 - hhvm
install:
 - composer install --no-dev --quiet
script: phpunit -c phpunit.xml --coverage-text

The Travis CI configuration is written in YAML format and includes these settings:

language

This is the language used for our application. We set this to php. This value is
case-sensitive!

php

Travis CI runs our application tests against these PHP versions. It is important
that you test against all PHP versions supported by your application.

install

This is a bash command executed by Travis CI before it runs application tests.
This is where you instruct Travis CI to install your project’s Composer dependen‐
cies. It is important that you use the --no-dev option to avoid installing unneces‐
sary development dependencies.

script

This is the bash command executed by Travis CI to run application tests. By
default, this is phpunit. You can override Travis CI’s default command with this
setting. In this example, we tell Travis CI to use our custom PHPUnit configura‐
tion file and generate plain text coverage results.

Run
Travis CI automatically runs your application tests every time you push new commits
to your GitHub repository and emails you the test results. How cool is that? There
are, of course, many more Travis CI settings to further customize the Travis CI testing
environment (e.g., install custom PHP extensions, use custom ini settings, and so
on). Read more about Travis CI configuration for PHP at Travis CI.

Further Reading
Here are a few links to help you learn more about PHP application testing:

• https://phpunit.de/
• https://www.phpspec.net/en/latest/manual/introduction.html
• http://behat.org/
• https://leanpub.com/grumpy-phpunit
• https://leanpub.com/grumpy-testing

50 | Chapter 5: Testing

http://bit.ly/build-php
https://phpunit.de/
https://www.phpspec.net/en/latest/manual/introduction.html
http://behat.org/
https://leanpub.com/grumpy-phpunit
https://leanpub.com/grumpy-testing

• https://www.littlehart.net/atthekeyboard/

What’s Next
In this chapter we learned why, when, and how to write tests. Testing our applications
builds confidence and creates more predictable code. However, tests do not let us
analyze application performance. This is why we must also profile our applications.
That’s what I want to talk about next.

What’s Next | 51

https://www.littlehart.net/atthekeyboard/

CHAPTER 6

Profiling

Profiling is how we analyze application performance. It is a great way to debug perfor‐
mance issues and pinpoint bottlenecks in your application code. In other words, if
your application is slow, use a profiler to figure out why. Profilers let us traverse the
entire PHP call stack, and they tell us which functions or methods are called, in what
order, how many times, with what arguments, and for how long. We can also see how
much memory and CPU are used throughout the application request lifecycle.

When to Use a Profiler
You don’t need to profile your PHP applications immediately. You only profile PHP
applications if there is a performance issue that is otherwise hard to diagnose. How
do you know if you have a performance issue? Some issues are obvious (e.g., a data‐
base query takes too long). Other issues may not be as obvious.

You can detect performance issues with benchmarking tools like Apache Bench and
Siege. A benchmarking tool allows you to test your application performance exter‐
nally, much like an application user would with a web browser. Benchmarking tools
let you set the number of concurrent users and total number of requests that hit a
specific application URL. When the benchmarking tool finishes, it tells you the num‐
ber of requests per second that your application sustained (among other statistics). If
you find a particular URL sustains only a small number of requests per second, you
may have a performance issue. If the performance issue is not immediately obvious,
you use a profiler.

Types of Profilers
There are two types of profilers. There are those that should run only during develop‐
ment, and there are those that can run during production.

53

http://bit.ly/apache-bench
http://www.joedog.org/siege-home/

Xdebug is a popular PHP profiling tool written by Derick Rethans, but it should only
be used as a profiler during development because it consumes a lot of system resour‐
ces to analyze your application. Xdebug profiler results are not human-readable, so
you’ll need an application to parse and display the results. KCacheGrind and WinCa‐
cheGrind are good applications for visualizing Xdebug profiler results.

XHProf is a popular PHP profiler originally written by Facebook, now owned and
maintained by the open source community. It is intended to be run during develop‐
ment and production. XHProf ’s profiler results are also not human-readable, but
there are companion web applications that will display results in a human-readable
format.

Both Xdebug and XHProf are PHP extensions, and you can install
them with your operating system’s package manager. They can also
be installed with pecl.

Xdebug
Xdebug is one of the most popular PHP profilers, and it makes it easy to analyze your
application’s call stack to find bottlenecks and performance issues. Refer to
Example 5-1 in Chapter 5 for Xdebug installation instructions.

Configure
Xdebug configuration lives in your php.ini file. Here are the Xdebug profiler configu‐
ration settings I recommend. Make sure you specify your own profiler output direc‐
tory. Restart your PHP process after saving these settings:

xdebug.profiler_enable = 0
xdebug.profiler_enable_trigger = 1
xdebug.profiler_output_dir = /path/to/profiler/results

xdebug.profiler_enable = 0

This instructs Xdebug to not run automatically. We don’t want Xdebug to run
automatically on each request, because that would drastically decrease perfor‐
mance and impede development.

xdebug.profiler_enable_trigger = 1

This instructs Xdebug to run on-demand. We can activate Xdebug profiling per-
request by adding the XDEBUG_PROFILE=1 query parameter to any of our
PHP application’s URLs. When Xdebug detects this query parameter, it profiles
the current request and generates a report in the output directory specified by the
xdebug.profiler_output_dir setting.

54 | Chapter 6: Profiling

https://xdebug.org/
https://kcachegrind.github.io/html/Home.html
http://sourceforge.net/projects/wincachegrind/
http://sourceforge.net/projects/wincachegrind/
http://xhprof.io

xdebug.profiler_output_dir = /path/to/profiler/results

This is the directory path that contains generated profiler results. Profiler reports
can be massive (e.g., 500 MB or larger) for complex PHP applications. Make sure
you change this value to the correct filesystem path for your application.

I recommend you keep profiler results beneath your PHP applica‐
tion’s topmost directory. This makes it easy to find and review pro‐
filer results while developing your application.

Trigger
The Xdebug profiler does not run automatically because the xdebug.pro

filer_enable setting is 0. We trigger the Xdebug profiler for a single request by
adding the XDEBUG_PROFILE=1 query parameter to any PHP application URL. An
example HTTP request URL might be /users/show/1?XDEBUG_PROFILE=1. When
Xdebug detects the XDEBUG_PROFILE query parameter, it activates and runs the pro‐
filer for the current request. The profiler results are dumped into the directory speci‐
fied by the xdebug.profiler_output_dir setting.

Analyze
The Xdebug profiler generates results in the CacheGrind format. You’ll need a
CacheGrind-compatible application to review the profiler results. Some good applica‐
tions for reviewing CacheGrind files are:

• WinCacheGrind for Windows
• KCacheGrind for Linux
• WebGrind for web browsers

Mac OS X users can install KCacheGrind with Homebrew using this command:

brew install qcachegrind

Homebrew is a package manager for OS X. We discuss Homebrew
in ???.

XHProf
XHProf is a newer PHP application profiler. It was originally created by Facebook
and is intended to be run during both development and production. It does not col‐

XHProf | 55

http://sourceforge.net/projects/wincachegrind/
https://kcachegrind.github.io/html/Home.html
https://github.com/jokkedk/webgrind
http://brew.sh

lect as much information as Xdebug’s profiler, but it consumes fewer system resour‐
ces, making it suitable for production environments.

Install
The easiest way to install XHProf is with your operating system’s package manager
(assuming you installed PHP the same way):

Ubuntu
sudo apt-get install build-essential;
sudo pecl install mongo;
sudo pecl install xhprof-beta;

CentOS
sudo yum groupinstall 'Development Tools';
sudo pecl install mongo;
sudo pecl install xhprof-beta;

Append these lines to your php.ini file, and restart your PHP process to load the new
extensions:

extension=xhprof.so
extension=mongo.so

XHGUI
XHProf is most useful when paired with XHGUI, Facebook’s companion web appli‐
cation used to review and compare XHProf profiler output. XHGUI is a PHP web
application and requires:

• Composer
• Git
• MongoDB
• PHP 5.3+
• PHP mongo extension

I assume these system requirements are installed. I also assume the XHGUI web
application lives in the /var/sites/xhgui/ directory. This directory path is probably dif‐
ferent on your server, so keep that in mind:

cd /var/sites;
git clone https://github.com/perftools/xhgui.git;
cd xhgui;
php install.php;

The XHGUI web application has a webroot/ directory. Update your web server virtual
host’s document root to this directory.

56 | Chapter 6: Profiling

Configure
Open XHGUI’s config/config.default.php file in a text editor. By default, XHProf col‐
lects data for only 1% of all HTTP requests. This is fine for production, but you may
want to collect data more frequently during development. You can increase XHProf ’s
data collection by editing these lines in the config/config.default.php file:

'profiler.enable' => function() {
 return rand(0, 100) === 42;
},

Change these lines to:

'profiler.enable' => function() {
 return true; // <-- Run on every request
},

XHProf assumes your PHP application runs on a single server. It
also assumes your MongoDB database does not require authentica‐
tion. If your MongoDB server does require authentication, update
the Mongo database connection in the config/config.default.php file.

Trigger
You must include the XHGUI web application’s external/header.php file at the very
beginning of your PHP application. It’s easiest to use PHP’s auto_prepend_file INI
configuration setting. You can set this in the php.ini configuration file:

auto_prepend_file = /var/sites/xhgui/external/header.php

Or you can set this in your nginx virtual host configuration:

fastcgi_param PHP_VALUE "auto_prepend_file=/var/sites/xhgui/external/header.php";

Or you can set this in your Apache virtual host configuration:

php_admin_value auto_prepend_file "/var/sites/xhgui/external/header.php"

Restart PHP, and XHProf will begin collecting and saving information into its Mon‐
goDB database. You can review and compare XHProf runs at the XHGUI virtual
host’s URL.

New Relic Profiler
Another popular PHP profiler is New Relic. This is actually a web service that uses a
custom operating system daemon and PHP extension to hook into your PHP applica‐
tion and report data back to the web service. Unlike Xdebug and XHProf, New Relic’s
PHP profiler is not free. That being said, I adore New Relic and recommend it if your
budget allows. Like XHProf, New Relic’s PHP profiler is meant to be run during

New Relic Profiler | 57

https://newrelic.com/

production, and it gives you a near real-time view of your application’s performance
with a really nice online dashboard. Learn more on New Relic’s website.

Blackfire Profiler
The makers of Symfony make a PHP profiler called Blackfire. It provides unique vis‐
ualization tools to help discover application bottlenecks. Blackfire has a PHP exten‐
sion and agent that runs on your application server. It reports data back to the
Blackfire server for analysis and visualization in the Blackfire web application.

Further Reading
I hope I’ve introduced you to PHP profiling in this chapter so that you feel comforta‐
ble finding, installing, and using a PHP profiler most appropriate for your applica‐
tion. Here are a few links to help you learn more about PHP profiling:

• http://www.sitepoint.com/the-need-for-speed-profiling-with-xhprof-and-xhgui/
• https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-1
• https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-2
• https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-3

What’s Next
At this point we’ve talked a lot about modern PHP, including new features, good
practices, provisioning, tuning, deployment, testing, and profiling. I hope you have
filled your brain with tons of fun ideas to implement in your next PHP applications.

Now I want to take a few minutes to chat about the future of PHP. A lot is happening
in the PHP ecosystem. The future of PHP is unfolding as we speak thanks to the latest
PHP 7 release with vastly improved performance, and thanks to HHVM, Hack, and
the PHP-FIG. Let’s explore HHVM and Hack, specifically, and figure out what they
mean for PHP’s future.

58 | Chapter 6: Profiling

http://bit.ly/new-relic-php
https://blackfire.io
http://www.sitepoint.com/the-need-for-speed-profiling-with-xhprof-and-xhgui/
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-1
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-2
https://blog.engineyard.com/2014/profiling-with-xhprof-xhgui-part-3
http://hhvm.com
http://hacklang.org
http://www.php-fig.org

CHAPTER 7

HHVM and Hack

Think what you will about the Facebook application, but I have nothing but praise for
the brilliant folks working at Facebook. Facebook Open Source has developed several
important projects in the last few years, two of which have had significant impact in
the PHP community.

The first initiative is HHVM, or the Hip Hop Virtual Machine. This alternative PHP
engine was released in October 2013. Its just-in-time (JIT) compiler provides perfor‐
mance many times better than PHP-FPM. In fact, WP Engine recently migrated to
HHVM and realized 3.9x faster custom Wordpress installations. MediaWiki also
transitioned to HHVM, and it has realized drastic improvements in both response
times and throughput.

The second initiative is Hack, a new server-side language that is a modification of the
PHP language. Hack is mostly backward-compatible with PHP code, although it
extends the PHP language with strict typing, new data structures, and a real-time type
checking server. That being said, Hack’s own developers prefer to call Hack a dialect
of PHP and not a new language.

HHVM
Since 1994, if you said PHP interpreter you meant the Zend Engine. The Zend Engine
was PHP. It was the one and only PHP interpreter. Then Mark Zuckerberg came
along and created this little thing called Thefacebook on February 4, 2004. Mr. Zuck‐
erberg and his growing company wrote the Facebook application predominantly with
PHP because the language is easy to learn and simple to deploy. The PHP language
lets Facebook quickly onboard new developers to grow, innovate, and iterate its
platform.

59

https://code.facebook.com/projects/
http://hhvm.com
http://bit.ly/engine-box
https://www.mediawiki.org/wiki/HHVM
http://hacklang.org
https://www.zend.com/en/community/php

Fast forward, and Facebook is a veritable empire. Its infrastructure is massive. Face‐
book is so huge that the traditional Zend Engine became a bottleneck for its develop‐
ers. The Facebook team had a hugely growing user base (by 2007, its user base
surpassed 1 in 10 people on the planet), and it had to figure out a way to improve
performance without simply building more data centers and buying more servers.

PHP at Facebook
The PHP language is traditionally interpreted, not compiled. This means that your
PHP code remains PHP code until it is sent through an interpreter when executed on
the command line or requested by a web server. The PHP script is read by the PHP
interpreter and converted into a set of existing Zend Opcodes (machine-code instruc‐
tions), and the Zend Opcodes are executed with the Zend Engine. Unfortunately,
interpreted languages execute slower than compiled languages because they must be
converted to machine code during every execution. This taxes system resources.
Facebook realized this performance bottleneck and, in 2010, began working on a
PHP-to-C++ compiler called HPHPc.

The HPHPc compiler converts PHP code into C++ code. It then compiles the C++
code into an executable that is deployed to production servers. HPHPc was largely
successful; it improved Facebook’s performance and reduced the strain on its servers.
However, HPHPc’s potential performance approached a ceiling, it was not 100% com‐
patible with the complete PHP language, and it required a time-consuming compile
process that created a lengthy feedback loop for developers. Facebook needed a
hybrid solution that delivered superior performance but also allowed for faster devel‐
opment without expensive compile time.

Facebook began working on the next iteration of HPHPc, called HHVM. HHVM
converts and caches PHP code into an intermediary bytecode format, and it uses a
JIT compiler to translate and optimize its bytecode cache into x86_64 machine code.
HHVM’s JIT compiler enables many low-level performance optimizations that are
simply not possible by compiling PHP directly to C++ with HPHPc. HHVM also
enables a fast feedback loop for developers because it compiles bytecode into machine
code only when PHP scripts are requested by a web server—just in time, you might
say—much like a traditional interpreted language. What’s more amazing is that
HHVM’s performance eclipsed HPHPc’s performance in November 2012, and it con‐
tinues to improve (Figure 7-1).

60 | Chapter 7: HHVM and Hack

https://php.net/manual/internals2.opcodes.php
http://bit.ly/hhvm-evo

Figure 7-1. HHVM vs. HPHPc Performance

HPHPc was deprecated soon after HHVM’s peformance exceeded its own, and
HHVM is currently Facebook’s preferred PHP interpreter.

Don’t let HHVM intimidate you! Its implementation may be com‐
plex, but at the end of the day HHVM is just a replacement for the
more familiar php and php-fpm binaries:

• You execute PHP scripts with the hhvm binary on the com‐
mand line, just like the php binary.

• You use the hhvm binary to create a FastCGI server, just like
the php-fpm binary.

• HHVM uses a php.ini configuration file, just like the tradi‐
tional Zend Engine. It even uses the same INI directives.

• HHVM has native support for many common PHP
extensions.

HHVM and Zend Engine Parity
Facebook’s original HPHPc compiler was not compatible with the complete PHP lan‐
guage (i.e., the Zend Engine). Complete parity is an aspiration for Facebook because
it lets HHVM become a drop-in replacement for the Zend Engine.

HHVM | 61

http://bit.ly/hhvm-evo

Facebook tested HHVM against the most popular PHP frameworks to ensure com‐
patibility with real-world PHP 5 code. Facebook is close to 100% compatibility. How‐
ever, Facebook has shifted its focus to user-reported issues on the HHVM issue
tracker to tackle remaining edge-case issues. HHVM is not yet 100% compatible with
the traditional Zend Engine, but it’s getting closer every day. Facebook, Baidu, and
Wikipedia already use HHVM in production. HHVM can also run Wordpress, Dru‐
pal, and many popular PHP frameworks.

Is HHVM Right for Me?
HHVM isn’t the right choice for everyone. There are far easier ways to improve appli‐
cation performance. Reducing HTTP requests and optimizing database queries are
low-hanging fruit that noticeably improve application performance and response
time. If you have not made these optimizations, do them first before you consider
HHVM. Facebook’s HHVM is for developers who have already made these optimiza‐
tions and still need faster applications. If you believe you need HHVM, here are some
resources to help you make the best decision:

Extensions
View a list of PHP extensions compatible with HHVM.

Issue Tracker
Track open HHVM issues.

FAQs
Read HHVM frequently asked questions.

Blog
Follow the latest HHVM news.

Install
HHVM is easy to install on the most popular Linux distributions. It was originally
developed for Ubuntu (my preferred Linux distibution), so I use Ubuntu in the fol‐
lowing examples.

Facebook provides prebuilt packages for other Linux distributions,
including Debian and Fedora. You can build HHVM from source
on even more Linux distributions.

Per Facebook’s instructions, you can install HHVM on the latest version of Ubuntu
with the Aptitude package manager like this:

62 | Chapter 7: HHVM and Hack

http://bit.ly/fb-hhvm
http://bit.ly/fb-hhvm
http://bit.ly/fb-extensns
http://bit.ly/fb-hhvm
https://github.com/facebook/hhvm/wiki/FAQ
http://hhvm.com/blog
https://docs.hhvm.com/hhvm/installation/linux

sudo apt-get install software-properties-common
sudo apt-key adv --recv-keys --keyserver hkp://keyserver.ubuntu.com:80 \
 0x5a16e7281be7a449
sudo add-apt-repository "deb http://dl.hhvm.com/ubuntu $(lsb_release -sc) main"
sudo apt-get update
sudo apt-get install hhvm

The preceding code adds HHVM’s GNU Privacy Guard (GPG) public key for pack‐
age verification. It adds the HHVM package repository to our local list of reposito‐
ries. Finally, it installs HHVM with Aptitude like any other software package. The
HHVM binary is installed at /usr/bin/hhvm.

Configure
HHVM uses a php.ini configuration file just as the Zend Engine does. This file exists
at /etc/hhvm/php.ini by default, and it contains many of the same INI settings used by
the Zend Engine. You can find a complete list of HHVM php.ini directives at https://
docs.hhvm.com/hhvm/configuration/INI-settings.

If you run HHVM as a FastCGI server, add server-related INI directives into the /etc/
hhvm/server.ini file. You can find a complete list of HHVM server directives at https://
docs.hhvm.com/hhvm/configuration/introduction. The HHVM wiki page is weak on
details, so you may want to peruse these HHVM support communities, too:

• StackOverflow
• IRC Channel
• Facebook Page

The default /etc/hhvm/server.ini file should be sufficient to get you started. It looks
like this:

; php options

pid = /var/run/hhvm/pid

; hhvm specific

hhvm.server.port = 9000
hhvm.server.type = fastcgi
hhvm.server.default_document = index.php
hhvm.log.use_log_file = true
hhvm.log.file = /var/log/hhvm/error.log
hhvm.repo.central.path = /var/run/hhvm/hhvm.hhbc

The most notable settings are hhvm.server.port = 9000 and hhvm.server.type =
fastcgi; they tell HHVM to run as a FastCGI server on local port 9000.

HHVM | 63

https://docs.hhvm.com/hhvm/configuration/INI-settings
https://docs.hhvm.com/hhvm/configuration/INI-settings
https://docs.hhvm.com/hhvm/configuration/introduction
https://docs.hhvm.com/hhvm/configuration/introduction
https://stackoverflow.com/questions/tagged/hhvm
https://webchat.freenode.net/?channels=hhvm
https://www.facebook.com/hhvm

When you execute the hhvm binary, you specify the path to your configuration files
with the -c option. If you use hhvm to execute command-line scripts, you only need
the /etc/hhvm/php.ini configuration file:

hhvm -c /etc/hhvm/php.ini my-script.php

If you use the hhvm binary to start a FastCGI server, you need both the /etc/hhvm/
php.ini and /etc/hhvm/server.ini files:

hhvm -m server -c /etc/hhvm/php.ini -c /etc/hhvm/server.ini

Extensions
HHVM cannot use PHP extensions that are compiled for the Zend Engine unless the
extensions use Facebook’s Zend Extension Source Compatibility Layer. Fortunately,
most of the PHP extensions we take for granted are supported by HHVM out of the
box. Other third-party PHP extensions (e.g., the GeoIP extension) can be compiled
separately and loaded into HHVM as a dynamic extension. You can find a list of PHP
extensions compatible with HHVM on GitHub.

Monitor HHVM with Supervisord
HHVM is just fine for your production server, but it’s not infallible. I recommend
you keep tabs on HHVM’s master process with Supervisord, a process monitor that
starts the HHVM process on boot and automatically restarts the HHVM process if
HHVM fails.

If you are unfamiliar with Supervisord, Chris Fidao has an excel‐
lent tutorial.

Install Supervisord with this command if you haven’t already:

sudo apt-get install supervisor

Next, make sure the /etc/supervisor/supervisord.conf configuration file has these two
lines:

[include]
files = /etc/supervisor/conf.d/*.conf

These two lines let us create a configuration file in the /etc/supervisor/conf.d/ direc‐
tory for each supervised application. Next, create the /etc/supervisor/conf.d/hhvm.conf
file with this content:

[program:hhvm]
command=/usr/bin/hhvm -m server -c /etc/hhvm/php.ini -c /etc/hhvm/server.ini

64 | Chapter 7: HHVM and Hack

http://bit.ly/ext-zen-comp
http://bit.ly/int-extension
http://supervisord.org
http://fideloper.com
http://bit.ly/c-fidao

directory=/home/deploy
autostart=true
autorestart=true
startretries=3
stderr_logfile=/home/deploy/logs/hhvm.err.log
stdout_logfile=/home/deploy/logs/hhvm.out.log
user=deploy

The most important settings are:

command

Supervisord runs this command to kick off the HHVM process. We use the -m
option to run HHVM in server mode. We also use the -c option to provide the
path to HHVM’s php.ini and server.ini configuration files.

autostart

This causes the HHVM process to start when the Supervisord process starts (e.g.,
on system boot).

autorestart

This prompts Supervisord to restart the HHVM process if it fails.

startretries

This is the number of times Supervisord should try to start the HHVM process
before Supervisord considers this process a failure.

user

This is the user that owns the HHVM process. I recommend you use an unprivi‐
leged user for security purposes. In this example, I use the same unprivileged
deploy user we created in Example 2-1.

Make sure you manually create the /home/deploy/logs directory,
because Supervisord does not create it for you.

After you finish editing the Supervisord configuration files, run these two commands
to reload and apply your changes:

sudo supervisorctl reread;
sudo supervisorctl update;

You can review all processes managed by Supervisord with this command:

sudo supervisorctl

HHVM | 65

You can start, stop, or restart a single Supervisord program as shown in the example
below. In this example, hhvm is the program name specified at the top of the /etc/
supervisor/conf.d/hhvm.conf file:

sudo supervisorctl start hhvm;
sudo supervisorctl stop hhvm;
sudo supervisorctl restart hhvm;

So far we’ve installed HHVM, and we monitor the HHVM process with Supervisord.
We still need a web server to proxy requests to HHVM. Remember, HHVM runs a
FastCGI server exactly as we do in Chapter 2 with PHP-FPM. We’ll use the HHVM
FastCGI server to handle PHP requests sent from Nginx.

HHVM, FastCGI, and Nginx
HHVM communicates with a web server (e.g., Nginx) with the FastCGI protocol. We
need to create an Nginx virtual host that proxies PHP requests to the HHVM
FastCGI server. Here’s an example Nginx virtual host definition that does that:

server {
 listen 80;
 server_name example.com;
 index index.php;
 client_max_body_size 50M;
 error_log /home/deploy/apps/logs/example.error.log;
 access_log /home/deploy/apps/logs/example.access.log;
 root /home/deploy/apps/example.com/current/public;

 location / {
 try_files $uri $uri/ /index.php$is_args$args;
 }

 location ~ \.php {
 include fastcgi_params;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME ument_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
 }
}

From this point forward, I assume Nginx is installed and running
on your server. Refer to Chapter 2 for Nginx installation instruc‐
tions.

Assuming you followed the Nginx installation instructions in Chapter 2, create a file
at /home/deploy/apps/example.com/current/public/index.php with this content:

66 | Chapter 7: HHVM and Hack

<?php
phpinfo();

Make sure the example.com domain points to your server’s IP address and visit http://
example.com/index.php in a web browser. You should see the word “HipHop” appear
in your browser window.

You can force your computer to point any domain name to any IP
address by updating your local /etc/hosts file. For example, this line
points the domain name example.com to IP address
192.168.33.10:

192.168.33.10 example.com

Congratulations! You’ve installed HHVM as a FastCGI server that can run your PHP
application. But a FastCGI server isn’t cool. You know what’s cool? Hack. HHVM can
run that, too.

The Hack Language
Hack is a server-side language that is similar to and seamless with PHP. Hack’s devel‐
opers even call Hack a dialect of PHP. Why did Facebook create something so similar
to PHP? Facebook created the Hack language for several reasons. The Hack language
adds new time-saving data structures and interfaces that are unavailable in PHP.
More important, Hack introduces static typing to help us write more predictable and
stable code. Static typing surfaces errors earlier in the development process using a
near-realtime type checking server.

Are new data structures, interfaces, and static typing worth the time required to learn
a new(ish) language and toolchain? Maybe. You have to remember that Facebook is
Facebook. It has thousands of developers all working on a gargantuan codebase. If
Facebook can optimize even the smallest part of its development process, it reaps a
large reward in both developer efficiency and a more stable, well-performing
codebase.

I do not recommend you drop what you’re doing and immediately port your existing
applications from PHP to Hack. However, if you are starting a new project and have
time to install and learn Hack, then—by all means—go wild. You’ll certainly benefit
from Hack’s data structures and static typing.

Convert PHP to Hack
To convert code from PHP to Hack, change <?php to <?hh. That’s it. This is PHP
code:

The Hack Language | 67

http://example.com/index.php
http://example.com/index.php
http://hacklang.org

<?php
echo "I'm PHP";

And this is equivalent Hack code:

<?hh
echo "I'm Hack";

Facebook makes it super-easy to go from PHP to Hack because it understands that
converting a large, existing codebase is not a quick task. Start your codebase migra‐
tion by only changing <?php to <?hh. Next, introduce a few static types. Later on,
explore some Hack data structures. The transition to Hack is gradual and painless,
and it happens on your schedule; this is by design.

What is a Type?
Before we compare dynamic and static typing, it’s probably helpful to define type.
Most PHP programmers think a type is the form of data assigned to a variable. For
example, the expression $foo = "bar" implies the $foo variable’s value is a string.
The expression $bar = 14 implies the $bar variable’s value is an integer. These exam‐
ples demonstrate types, yes, but they betray the full definition of a type.

A type is a nebulous label that we assign to properties of an application to prove that
certain behaviors exist and, to our own expectations, are fundamentally correct. I’m
paraphrasing Chris Smith’s excellent explanation of programming types.

We can expand our definition of a type to a syntactical annotation that clarifies the
identity of program variables, arguments, or return values. Type annotations (or
hints) are used in both PHP and Hack. You’ve probably seen code like this:

<?php
class WidgetContainer
{
 protected $widgets;

 public function __construct($widgets = array())
 {
 $this->widgets = array_values($widgets);
 }

 public function addWidget(Widget $widget)
 {
 $this->widgets[] = $widget;

 return this;
 }

 public function getWidget($index)
 {
 if (isset($this->widgets[$index]) === false) {

68 | Chapter 7: HHVM and Hack

http://bit.ly/prog-types

 throw new OutOfRangeException();
 }

 return $this->widgets[$index];
 }
}

This is an arbitrary example, but it uses syntax hints to enforce specific application
properties. For example, in the addWidget() method signature we use a Widget hint
before the $widget argument to tell PHP we expect the method argument to be an
instance of class Widget. The PHP interpreter enforces this expectation. If an argu‐
ment is provided that is not an instance of class Widget, the code fails. In this exam‐
ple, the type is our annotated expectation that the addWidget() method accepts
arguments only of class Widget.

Our earlier naive examples (e.g., $foo = "bar") and this WidgetContainer example
both demonstrate types. The first example demonstrates a type that proves a variable
is a string, even though we don’t explicitly annotate the expectation. The PHP inter‐
preter is smart enough to infer the string type in this example based on the code syn‐
tax. The second example creates a type with an annotation that explicitly defines the
expected behavior of the addWidget() method, and the PHP interpreter enforces this
behavior based on our explicit hint rather than making an inference.

Types are more than inferred identities and annotations. However,
these are the two manifestations you’ll see and use most often when
writing PHP and Hack code. You can learn more about program‐
ming types in Benjamin C. Pierce’s book “Types and Programming
Languages.”

If you thought that PHP type hints are static types, you’re probably scratching your
head right about now because I just burst your bubble. Both static and dynamic typ‐
ing help us write code that behaves correctly according to our expectations, and both
employ their own type systems. The main differences between static and dynamic
typing are when program types are checked and how a program is tested for correctness.

Static Typing
The correct behavior of a statically typed program is implied by the code, via inferen‐
ces, annotations, or other language-specific types. If a statically typed program com‐
piles successfully, we can be confident the program is proven to behave as written.
The program’s types become our tests, and they ensure that the program satisfies our
basic expectations.

Did you notice I used the word compiles? Statically typed languages are often com‐
piled. Type checking and error reporting are delegated to the language compiler. This

The Hack Language | 69

http://bit.ly/tpl-pierce
http://bit.ly/tpl-pierce

is nice, because the compiler surfaces type-related program errors at compile time
before the application is deployed into production. Unfortunately, compiled lan‐
guages imply a lengthy feedback loop. A program must be compiled to reveal errors,
and complicated programs take a long time to compile. This decelerates develop‐
ment.

The upside to statically typed programs is that they are usually more stable because
their behavior is proven by the compiler’s type checker. However, we should still write
separate tests to verify that the program behavior is correct. If a program compiles,
that only means the program does what the code says it should do. That does not
mean the program does what we intend it to do. That being said, static typing saves us
from writing type-related unit tests as we do for dynamically typed programs.

Dynamic Typing
Unlike static typing, dynamic typing cannot enforce code behavior at compile time,
because the program types are not checked until runtime. Dynamically typed pro‐
grams are often interpreted, too. PHP is a dynamically typed and interpreted lan‐
guage. This means that every time you execute a PHP script—either directly on the
command line or indirectly via a web server—the PHP code is read by an interpreter,
converted into a set of preexisting opcodes codes, and executed.

So how do you find errors if PHP is not compiled? Errors are surfaced during run‐
time. This is both a blessing and a curse. It’s good because we can iterate quickly. We
write code and run it. Feedback is near-instantaneous. Unfortunately, we lose the
inherent accuracy and tests provided by static type checking. Separate unit tests
become far more important to validate types and intended behavior. Our tests must
cover all possible behaviors. This works for the behavior we anticipate, but it fails
miserably for the behavior we do not anticipate. Unanticipated behaviors gnash their
teeth during runtime as PHP errors, and we must handle them gracefully with
friendly messages and appropriate logging.

Hack Goes Both Ways
Static typing is Hack’s biggest selling point. Even more interesting is that Hack does
static and dynamic typing. Remember, Hack is mostly backward-compatible with reg‐
ular PHP. This means Hack supports all of PHP’s dynamic typing features that you
expect. This is possible because Hack is run with HHVM’s JIT compiler. The Hack
code is type checked as it is written with a standalone type checker. The Hack code is
read, optimized, and cached into an intermediary bytecode by HHVM. A Hack file is
only converted into x86_64 machine code and executed on demand. It’s really the
best of both worlds. We get the accuracy and safety of static typing with Hack’s type
checker (more on this next) and the flexibility and quick iteration of dynamic typing
thanks to HHVM’s JIT compiler.

70 | Chapter 7: HHVM and Hack

There are a few PHP features not supported by Hack. They are lis‐
ted at https://docs.hhvm.com/hack/unsupported/introduction. These
features are supported by HHVM when executing normal PHP
code.

Hack Type Checking
Hack comes with a standalone type-checking server that runs in the background and
type-checks your code in realtime. This is huge. This is also the main reason why
Facebook created the Hack language. Hack’s instantaneous type checking provides
the accuracy and safety of static typing without the lengthy feedback loop. If you are
using Hack without its type checker, you’re holding it wrong.

Here’s how to set up Hack’s type checker for your application. First, I assume HHVM
is installed and running. If not, refer to the HHVM section for installation instruc‐
tions. Next, create an empty file named .hhconfig in your project’s topmost directory.
This tells the Hack type checker which directory to analyze. The type checker watches
files beneath this directory and type-checks the appropriate files whenever it detects
filesystem changes. Start the Hack type checker by executing the hh_client com‐
mand in or beneath your project’s topmost directory.

Hack’s type checker does have a few limitations. Per Hack’s online documentation:
The type checker assumes that there is a global autoloader that can load any class on
demand. This means that it insists that all class and function names are unique, and
has no notion of checking imports or anything of that nature. Futhermore, it does not
support conditional definitions of functions or classes — it must be able to statically
know what is and what is not defined. It is of course perfectly possible to have a project
that meets these requirements without a global autoloader, and the type checker will
work fine on such a project, but a project using an autoloader was the intended use
case.
Mixing HTML and Hack code are not supported by the type checker. Following and
statically analyzing these complicated mode switches is unsupported, particularly since
much modern code doesn’t make use of this functionality. Hack code can output
markup to the browser in a simple way via echo, or using a templating engine or XHP
for more complex scenarios.

Hack Modes
Hack code can be written in three modes: strict, partial, or decl. If you are start‐
ing a project with Hack, I recommend you use strict mode. If you are migrating
existing PHP code to Hack, or if your project uses both PHP and Hack code, you may
want to use partial mode. The decl mode lets you integrate legacy, untyped PHP
code into an otherwise strict Hack codebase. You declare the mode at the very top

The Hack Language | 71

https://docs.hhvm.com/hack/unsupported/introduction
https://docs.hhvm.com/hack/unsupported/others

of the file, after and adjacent to the opening Hack or PHP tag (see the following
examples). Mode names are case-sensitive:

<?hh // strict

Strict mode requires all code to be appropriately annotated. The Hack type
checker will catch all possible type-related errors. This mode also prevents your
Hack code from using non-Hack code (e.g., legacy PHP code). Be sure you read
up on Hack type annotations before you commit to strict mode. Among other
requirements, all Hack arrays must be typed; you cannot use an untyped array in
Hack. You must also annotate return types for functions and methods.

<?hh // partial

Partial mode (the default) allows Hack code to use PHP code that has not been
converted to Hack. Partial mode also does not require you to annotate all of a
function or method’s arguments. You can annotate a subset of the arguments
without angering the Hack type checker. If you are just getting started with Hack,
or if you are converting an existing PHP codebase, this is probably the best mode
for you.

<?php // decl

decl mode lets strict Hack code call untyped code. This is often the case when
newer Hack code depends on a legacy, untyped PHP class. In this scenario, the
legacy PHP code should declare itself in decl mode before the newer Hack code
can use it.

Hack Syntax
Hack supports type annotations for class properties, method arguments, and return
types. These annotations are checked with Hack’s standalone type checker in accord‐
ance with each file’s mode.

Read a complete list of available type annotations.

Let’s revisit our earlier WidgetContainer example and introduce type annotations.
The updated Hack code looks like this:

01. <?hh // strict
02. class WidgetContainer
03. {
04. protected Vector<Widget> $widgets;
05.
06. public function __construct(array<Widget> $widgets = array())

72 | Chapter 7: HHVM and Hack

https://docs.hhvm.com/hack/types/annotations

07. {
08. foreach ($widgets as $widget) {
09. $this->addWidget($widget);
10. }
11. }
12.
13. public function addWidget(Widget $widget) : this
14. {
15. $this->widgets[] = $widget;
16.
17. return this;
18. }
19.
20. public function getWidget(int $index) : Widget
21. {
22. if ($this->widgets->containsKey($index) === false) {
23. throw new OutOfRangeException();
24. }
25.
26. return $this->widgets[$index];
27. }
28. }

Property annotations

On line 4, we declare the $widgets class property with the Vector<Widget> annota‐
tion. This annotation tells us two things:

• This property is a Vector (similar to a numerically indexed array).
• This property must contain only Widget instances.

Argument annotations
This is probably familiar to those of you who already use PHP type hints. On line 6,
we annotate the __construct() method’s argument with the array<Widget> annota‐
tion. This annotation tells us two things:

• The argument must be an array.
• The argument must contain only Widget instances.

Unlike the property annotation on line 4, this argument can be either a numeric or an
associative array. We iterate the array argument’s values and add them to the Vector
data structure. If you did want the argument to be either a numeric or an associative
array, you could use the array<int, Widget> or array<string, Widget> annota‐
tions respectively.

The Hack Language | 73

http://bit.ly/vector-tv

Return-type annotations

On lines 13 and 20, we annotate the methods’ return types. The addWidget() method
returns itself (more on this soon). The getWidget() method returns a Widget
instance. Return-type annotations are declared after the method signature’s closing
parenthesis and before the method body’s opening bracket.

The exception to this rule is the __construct() method. One
might think the constructor’s return value is void; it’s not. You
should not annotate the constructor method’s return type.

Some developers like to enable method chaining. This means that a class method
returns itself so that multiple method calls can be chained together like this:

$object->methodOne()->methodTwo();

Hack lets you annotate this behavior with the this return type. We use the this
annotation with the addWidget() method on line 13.

Hack Data Structures
The Hack language’s headline feature is static typing. However, Hack also provides
new data structures and interfacs that are not found in PHP. These can potentially
save you development time versus implementing similar workarounds in vanilla PHP.
Some of Hack’s new data structures and interfaces are:

• Collections (vectors, maps, sets, and pairs)
• Generics
• Enums
• Shapes
• Tuples

Many of these data structures complement, clarify, or supplement PHP’s functional‐
ity. For example, Hack’s Collection interfaces clarify PHP’s array ambiguity. Generics
let you create data structures to handle homogenous values of a given type that is
inferred only when an instance of the generic class is created; this alleviates the need
to manually enforce type checking inside a class with PHP’s instanceof method.
Enums are helpful for creating a set of named constants without resorting to abstract
classes. Shapes help you type-check data structures that should have a fixed set of
keys. And tuples let you use arrays of an immutable length.

Please don’t feel like you need to rush out and implement all of these data structures. I
admit, some of them are of limited and niche utility. Some data structures duplicate

74 | Chapter 7: HHVM and Hack

https://docs.hhvm.com/hack/collections/introduction
https://docs.hhvm.com/hack/generics/introduction
https://docs.hhvm.com/hack/enums/introduction
https://docs.hhvm.com/hack/shapes/introduction
https://docs.hhvm.com/hack/tuples/introduction

(and extend) functionality found in other data structures. I suggest you read up on
which data structures are available and only use them if and when you need them.

I believe the most useful Hack data structures are the various Col‐
lection interfaces. These provide more appropriate and predictable
behavior than PHP’s array data structure. It’s best to use a Collec‐
tion instead of a PHP array.

HHVM/Hack vs. PHP
If HHVM and Hack are so awesome, why should you use PHP? I’m asked this ques‐
tion a lot. I’m also asked if and when PHP will meet its demise. The answer is not
black-and-white. It’s more a muddy neutral gray.

HHVM is the first true competitor to the traditional Zend Engine PHP runtime.
HHVM is proven to perform better and be more memory-efficient than the PHP 5.6
Zend Engine on many real-world benchmarks. I think this caught the PHP core
development team by surprise. In fact, HHVM’s mere existence is probably responsi‐
ble for PHP 7’s increased performance and reduced memory usage. PHP 7 perfor‐
mance is competitive with, if not better than, HHVM. The point is that HHVM
creates competition, and competition helps everyone. Both HHVM and the Zend
Engine will improve, and PHP developers will reap the benefits. Neither HHVM nor
the Zend Engine is going to win or lose. I believe they will coexist and feed off of their
competitive energies.

The Hack language, in my opinion, is better than PHP. There are several reasons for
this. First, the Hack language was built by Facebook to answer specific needs. It is
focused. It has purpose. And it is not developed by committee. The PHP language, in
contrast, has evolved piecemeal over a longer period of time. PHP answers many dif‐
ferent needs, and it is controlled by a committee that is not known for its cordial
agreements. As of PHP 5.x, the Hack language is the better option for its strict type
checking and support for legacy PHP code. I believe a lot of Hack’s best features will
eventually find their way into PHP. And vice versa. In fact, the Hack language team
has said it intends to maintain future compatibility with the Zend Engine. Again, I
believe competition will improve both languages and they’ll enjoy a symbiotic rela‐
tionship.

An example of this symbiosis is the official PHP specification. Until recently, the PHP
language was the Zend Engine for lack of alternative implementations. The introduc‐
tion of HHVM prompted several developers at Facebook to announce a PHP lan‐
guage specification. This specification is an amazing development in the PHP
community, and it ensures that current and future PHP implementations (Zend
Engine, HHVM, and so on) all support the same fundamental language.

The Hack Language | 75

http://bit.ly/fb-spec
http://bit.ly/fb-spec

You can read the official PHP implementation on GitHub at https://
github.com/php/php-langspec.

Further Reading
We’ve touched on a lot of HHVM and the Hack language in a very short period of
time. There are simply not enough pages to cover everything these two initiatives
have to offer. Instead, I’ll point you to these helpful resources:

• http://hhvm.com
• http://hacklang.org
• @ptarjan on Twitter
• @SaraMG on Twitter
• @HipHopVM on Twitter
• @HackLang on Twitter

76 | Chapter 7: HHVM and Hack

https://github.com/php/php-langspec
https://github.com/php/php-langspec
http://hhvm.com
http://hacklang.org
https://twitter.com/ptarjan
https://twitter.com/SaraMG
https://twitter.com/HipHopVM
https://twitter.com/HackLang

CHAPTER 8

Community

The PHP community is your most valuable resource. It is diverse, vibrant, and global.
I encourage you to participate in the PHP community to learn from and share with
other PHP developers. There’s always more to learn, and your PHP community is the
best way to continue learning. It’s also a great way to meet and help other developers.

Local PUG
My first advice is to find and join your local PHP User Group (PUG). Many cities
have them. You can find your local PUG at https://php.ug/. Your local PUG is the best
opportunity to meet and network with fellow PHP developers in your local
community.

If there isn’t a nearby PUG, you have several options. You can start your own PUG.
Unless you live in the middle of a jungle, I bet there are like-minded nearby PHP
developers who would love to join a PUG. Otherwise, you can join NomadPHP—an
online user group with monthly speakers and lightning talks that cover all sorts of
PHP features and practices.

Conferences
There are numerous PHP conferences every year. Conferences are an excellent
opportunity to meet and mingle with the greatest minds in the PHP community. You
can listen to and talk with PHP speakers and thought leaders. And you can stay up-
to-date with emerging features and modern practices. Conferences are also an excuse
to take a minivacation. You can find a list of upcoming PHP conferences at https://
php.net/conferences/.

77

https://php.ug/
https://nomadphp.com
https://php.net/conferences/
https://php.net/conferences/

Mentoring
If you are a beginner PHP developer and need advice or assistance, you can find a
mentor at https://phpmentoring.org/. Many expert PHP developers donate their time
to help new PHP developers become better. If you are already an expert PHP devel‐
oper, consider signing up as a PHP mentor. There are many beginner PHP developers
who don’t know how or where to start, and your mentorship will be invaluable.

Stay Up-to-Date
The PHP language changes frequently. Here are a few resources to help you stay up-
to-date with newer PHP features and modern practices.

Websites
• https://php.net
• https://php.net/docs.php
• http://www.php-fig.org
• http://www.phptherightway.com

Mailing Lists
• https://php.net/mailing-lists.php

Twitter
• @official_php
• @phpc

Podcasts
• https://voicesoftheelephpant.com/
• http://looselycoupled.info
• http://elephantintheroom.io
• http://phptownhall.com
• http://devhell.info
• http://www.phpclasses.org/blog/category/podcast/

78 | Chapter 8: Community

https://phpmentoring.org/
https://php.net
https://php.net/docs.php
http://www.php-fig.org
http://www.phptherightway.com
https://php.net/mailing-lists.php
https://twitter.com/official_php
https://twitter.com/phpc
https://voicesoftheelephpant.com/
http://looselycoupled.info
http://elephantintheroom.io
http://phptownhall.com
http://devhell.info
http://www.phpclasses.org/blog/category/podcast/

• http://threedevsandamaybe.com/

Humor
• @phpbard
• @phpdrama

Stay Up-to-Date | 79

http://threedevsandamaybe.com/
https://twitter.com/phpbard
https://twitter.com/phpdrama

About the Author
Josh Lockhart created the Slim Framework, a popular PHP micro framework that
enables rapid Web application and API development. Josh also started and currently
curates PHP The Right Way, a popular initiative in the PHP community that encour‐
ages good practices and disseminates quality information for PHP developers around
the world.

Josh is a developer at New Media Campaigns, a full-service web design, development,
and marketing agency in Carrboro, North Carolina. He enjoys building custom appli‐
cations with HTML, CSS, PHP, JavaScript, Bash, and various content management
frameworks.

He graduated from the Information and Library Science program at the University of
North Carolina at Chapel Hill in 2008. He currently resides in Chapel Hill, North
Carolina with his wonderful wife, Laurel, and their two dogs.

You can follow Josh on Twitter, read his blog at https://joshlockhart.com, and track his
open source projects on GitHub.

http://slimframework.com/
http://www.phptherightway.com/
http://www.newmediacampaigns.com/
http://sils.unc.edu/
https://twitter.com/codeguy
https://joshlockhart.com
https://github.com/codeguy

	Cover
	Copyright
	Table of Contents
	Foreword
	Part I. Deployment, Testing, and Tuning
	Chapter 1. Hosting
	Shared Server
	Virtual Private Server
	Dedicated Server
	PaaS
	Choose a Hosting Plan

	Chapter 2. Provisioning
	Our Goal
	Server Setup
	First Login
	Software Updates
	Nonroot User
	SSH Key-Pair Authentication
	Disable Passwords and Root Login

	PHP-FPM
	Install
	Global Configuration
	Pool Configuration

	Nginx
	Install
	Virtual Host

	Automate Server Provisioning
	Delegate Server Provisioning
	Further Reading
	What’s Next

	Chapter 3. Tuning
	The php.ini File
	Memory
	Zend OPcache
	File Uploads
	Max Execution Time
	Session Handling
	Output Buffering
	Realpath Cache
	Up Next

	Chapter 4. Deployment
	Version Control
	Automate Deployment
	Make It Simple
	Make It Predictable
	Make It Reversible

	Capistrano
	How It Works
	Install
	Configure
	Authenticate
	Prepare the Remote Server
	Capistrano Hooks
	Deploy Your Application
	Roll Back Your Application

	Further Reading
	What’s Next

	Chapter 5. Testing
	Why Do We Test?
	When Do We Test?
	Before
	During
	After

	What Do We Test?
	How Do We Test?
	Unit Tests
	Test-Driven Development (TDD)
	Behavior-Driven Development (BDD)

	PHPUnit
	Directory Structure
	Install PHPUnit
	Install Xdebug
	Configure PHPUnit
	The Whovian Class
	The WhovianTest Test Case
	Run Tests
	Code Coverage

	Continuous Testing with Travis CI
	Setup
	Run

	Further Reading
	What’s Next

	Chapter 6. Profiling
	When to Use a Profiler
	Types of Profilers
	Xdebug
	Configure
	Trigger
	Analyze

	XHProf
	Install
	XHGUI
	Configure
	Trigger

	New Relic Profiler
	Blackfire Profiler
	Further Reading
	What’s Next

	Chapter 7. HHVM and Hack
	HHVM
	PHP at Facebook
	HHVM and Zend Engine Parity
	Is HHVM Right for Me?
	Install
	Configure
	Extensions
	Monitor HHVM with Supervisord
	HHVM, FastCGI, and Nginx

	The Hack Language
	Convert PHP to Hack
	What is a Type?
	Static Typing
	Dynamic Typing
	Hack Goes Both Ways
	Hack Type Checking
	Hack Modes
	Hack Syntax
	Hack Data Structures
	HHVM/Hack vs. PHP

	Further Reading

	Chapter 8. Community
	Local PUG
	Conferences
	Mentoring
	Stay Up-to-Date
	Websites
	Mailing Lists
	Twitter
	Podcasts
	Humor

	About the Author

